- 鲱鱼 ( Clupea harengus, Clupea pallasii ), 凤尾鱼 ( Engraulis spp .), 沙丁鱼 ( Sardina pilchardus, Sardinops spp.), 沙丁鱼 (Sardinella spp.), brisling or sprattus ( Sprattus sprattus ), 鲭鱼 ( Scomber scombrus , Scomber australasicus , Scomber japonicus ), 印度鲭鱼 ( Rastrelliger spp .), 锯鱼 ( Scomberomorus spp .), 竹荚鱼和竹荚鱼 ( Trachurus spp .), jacks, crevalles ( Caranx spp .)、军曹鱼 ( Rachycentron canadum )、银鲳 ( Pampus spp .)、秋刀鱼 ( Cololabis saira )、鲹 ( Decapterus spp .) 、毛鳞鱼(Mallotus villosus)、剑鱼(Xiphias gladius)、卡瓦卡瓦鱼(Euthynnus affinis)、鲣鱼(Sarda spp.)、枪鱼、旗鱼、旗鱼(Istiophoridae),不包括子目 0303.91 至 0303.92 的可食用鱼内脏0303.99:
- 鲱鱼 ( Clupea harengus, Clupea pallasii ), 凤尾鱼 ( Engraulis spp .), 沙丁鱼 (Sardina pilchardus, Sardinops spp .), 沙丁鱼 ( Sardinella spp .), brisling or sprattus ( Sprattus sprattus ), 鲭鱼 ( Scomber scombrus , Scomber australasicus , Scomber japonicus ), 印度鲭鱼 ( Rastrelliger spp .), 锯鱼 ( Scomberomorus spp .), 竹荚鱼和竹荚鱼 ( Trachurus spp .), jacks, crevalles ( Caranx spp .)、军曹鱼 ( Rachycentron canadum )、银鲳 ( Pampus spp .、秋刀鱼 ( Cololabis saira )、鲹 ( Decapterus spp .)、毛鳞鱼 (Mallotus villosus)、剑鱼 (Xiphias gladius)、卡瓦卡瓦鱼 (Euthynnus affinis)、鲣鱼 (Sarda spp.)、枪鱼、旗鱼、旗鱼 (Istiophoridae),不包括子目 0302.91 的可食用鱼内脏至 0302.99:
- 鲱鱼 ( Clupea harengus, Clupea pallasii ), 凤尾鱼 ( Engraulis spp .), 沙丁鱼 (Sardina pilchardus, Sardinops spp .), 沙丁鱼 ( Sardinella spp .), brisling or sprattus ( Sprattus sprattus ), 鲭鱼 ( Scomber scombrus , Scomber australasicus , Scomber japonicus ), 印度鲭鱼 ( Rastrelliger spp .), 锯鱼 ( Scomberomorus spp .), 竹荚鱼和竹荚鱼 ( Trachurus spp .), jacks, crevalles ( Caranx spp .)、军曹鱼 ( Rachycentron canadum )、银鲳 ( Pampus spp .、秋刀鱼 ( Cololabis saira )、鲹 ( Decapterus spp .)、毛鳞鱼 ( Mallotus villosus )、剑鱼 ( Xiphias gladius )、卡瓦卡瓦鱼 ( Euthynnus affinis )、鲣鱼 ( Sarda spp .)、马林鱼、旗鱼、旗鱼 ( Istiophoridae ),不包括子目 0302.91 的可食用鱼内脏至 0302.99:
- 鲱鱼 ( Clupea harengus, Clupea pallasii ), 凤尾鱼 ( Engraulis spp .), 沙丁鱼 ( Sardina pilchardus, Sardinops spp.), 沙丁鱼 (Sardinella spp.), brisling or sprattus ( Sprattus sprattus ), 鲭鱼 ( Scomber scombrus , Scomber australasicus , Scomber japonicus ), 印度鲭鱼 ( Rastrelliger spp .), 锯鱼 ( Scomberomorus spp .), 竹荚鱼和竹荚鱼 ( Trachurus spp .), jacks, crevalles ( Caranx spp .)、军曹鱼 ( Rachycentron canadum )、银鲳 ( Pampus spp .)、秋刀鱼 ( Cololabis saira )、鲹 ( Decapterus spp .) 、毛鳞鱼(Mallotus villosus)、剑鱼(Xiphias gladius)、卡瓦卡瓦鱼(Euthynnus affinis)、鲣鱼(Sarda spp.)、枪鱼、旗鱼、旗鱼(Istiophoridae),不包括子目 0303.91 至 0303.92 的可食用鱼内脏0303.99:
Lei对没有派范围的ERCOT RT SPP的模拟(称为“基于协议的SPPS)。)表示,价格平均为2,404美元/兆瓦,金额为6,578美元/兆瓦的价格,比Ercot实施了puct订单后建立的RT SPP(称为“报告的SPP”)。如下一页的图1所示,报告的SPP和基于协议的SPP之间的差异是最小的,当负载棚(即旋转中断)处于较高水平(22:15之后的2月15日,并且2月16日,2月16日),因为在许多小时内,基于协议的SPP是不利于ERCOT的调整,因此是基于协议的spp。当2月17日减少负载棚量时,由于返回更正常的供求基本面,基于协议的SPP迅速下降。但是,Ercot的SPP仍然很高。到2月18日,所有负载棚都结束了,基于协议的平均SPP进一步下降到$ 1,000/ MWH。因此,在一周的后几天,报告的SPP和基于协议的SPP之间存在更大的差异。
Agersnap,S.,Larsen,W.B.,Knudsen,S.W.,Strand,D.,Thomsen,P.F.,Hesselsøe,M。Etal。(2017)。使用淡水样品中的环境DNA对贵族,信号和狭窄的小龙虾进行监测。PLOS ONE,12(6),E0179261。https://doi.org/10.1371/journal.pone。0179261 Andruszkiewicz,E.A.,Sassoubre,L.M。&Boehm,A.B。(2017)。海洋鱼环境DNA的持久性和阳光的影响。PLOS ONE,12(9),E0185043。https://doi.org/10.1371/journal.pone.0185043 Barnes,M.A。 &Turner,C.R。 (2016)。 环境DNA的生态及其对保护遗传学的影响。 保护遗传学,17(1),1 - 17。https://doi.org/10.1007/s10592-015-015-015-0775-4 Boulanger,E.,Loiseau,N. (2021)。 环境DNA元法编码揭示并解开地中海海洋储量中的生物多样性保护悖论。 皇家学会的会议记录B,288(1949),20210112。https:// doi。 org/10.1098/rspB.2021.0112 Boussarie,G.,Bakker,J.,Wangensteen,O.S。,Mariani,S.,Bonnin,L.,Juhel,J.B.等。 (2018)。 环境DNA照亮了鲨鱼的黑暗多样性。 科学进步,4(5),EAAP9661。 https://doi.org/ 10.1126/sciadv.aap9661 Budd,A.M.,Cooper,M.K.,Le Port,A.,Schils,T. 等。 (2021)。 使用环境DNA在五十年内,首次检测了密克罗尼西亚关岛的急性濒危扇形的锤头鲨(Sphyrna Lewini)。https://doi.org/10.1371/journal.pone.0185043 Barnes,M.A。&Turner,C.R。(2016)。环境DNA的生态及其对保护遗传学的影响。保护遗传学,17(1),1 - 17。https://doi.org/10.1007/s10592-015-015-015-0775-4 Boulanger,E.,Loiseau,N.(2021)。环境DNA元法编码揭示并解开地中海海洋储量中的生物多样性保护悖论。皇家学会的会议记录B,288(1949),20210112。https:// doi。org/10.1098/rspB.2021.0112 Boussarie,G.,Bakker,J.,Wangensteen,O.S。,Mariani,S.,Bonnin,L.,Juhel,J.B.等。(2018)。环境DNA照亮了鲨鱼的黑暗多样性。科学进步,4(5),EAAP9661。https://doi.org/ 10.1126/sciadv.aap9661 Budd,A.M.,Cooper,M.K.,Le Port,A.,Schils,T.等。(2021)。使用环境DNA在五十年内,首次检测了密克罗尼西亚关岛的急性濒危扇形的锤头鲨(Sphyrna Lewini)。生态指标,127,107649。https://doi.org/10.1016/j.ecolind.2021.107649 Bustin,S.A.(2009)。MIQE指南:最少发表定量实时PCR实验的信息。临床化学,55(4),611 - 622。https://doi.org/10.1373/clinchem.2008.112797 Caza-Allard,I.&Bernatchez,L。(2022)。生物和非生物因素对鱼环境DNA的产生和降解的影响:一种实验评估。环境DNA,4(2),453 - 468。https://doi.org/10.1002/edn3.266 Collins,R.A.,Wangensteen,O.S.,O.S.,O'Gorman,E.J. &Genner,M.J。(2018)。海洋中环境DNA的持久性
Agersnap,S.,Larsen,W.B.,Knudsen,S.W.,Strand,D.,Thomsen,P.F.,Hesselsøe,M。Etal。(2017)。使用淡水样品中的环境DNA对贵族,信号和狭窄的小龙虾进行监测。PLOS ONE,12(6),E0179261。https://doi.org/10.1371/journal.pone。0179261 Andruszkiewicz,E.A.,Sassoubre,L.M。&Boehm,A.B。(2017)。海洋鱼环境DNA的持久性和阳光的影响。PLOS ONE,12(9),E0185043。https://doi.org/10.1371/journal.pone.0185043 Barnes,M.A。 &Turner,C.R。 (2016)。 环境DNA的生态及其对保护遗传学的影响。 保护遗传学,17(1),1 - 17。https://doi.org/10.1007/s10592-015-015-015-0775-4 Boulanger,E.,Loiseau,N. (2021)。 环境DNA元法编码揭示并解开地中海海洋储量中的生物多样性保护悖论。 皇家学会的会议记录B,288(1949),20210112。https:// doi。 org/10.1098/rspB.2021.0112 Boussarie,G.,Bakker,J.,Wangensteen,O.S。,Mariani,S.,Bonnin,L.,Juhel,J.B.等。 (2018)。 环境DNA照亮了鲨鱼的黑暗多样性。 科学进步,4(5),EAAP9661。 https://doi.org/ 10.1126/sciadv.aap9661 Budd,A.M.,Cooper,M.K.,Le Port,A.,Schils,T. 等。 (2021)。 使用环境DNA在五十年内,首次检测了密克罗尼西亚关岛的急性濒危扇形的锤头鲨(Sphyrna Lewini)。https://doi.org/10.1371/journal.pone.0185043 Barnes,M.A。&Turner,C.R。(2016)。环境DNA的生态及其对保护遗传学的影响。保护遗传学,17(1),1 - 17。https://doi.org/10.1007/s10592-015-015-015-0775-4 Boulanger,E.,Loiseau,N.(2021)。环境DNA元法编码揭示并解开地中海海洋储量中的生物多样性保护悖论。皇家学会的会议记录B,288(1949),20210112。https:// doi。org/10.1098/rspB.2021.0112 Boussarie,G.,Bakker,J.,Wangensteen,O.S。,Mariani,S.,Bonnin,L.,Juhel,J.B.等。(2018)。环境DNA照亮了鲨鱼的黑暗多样性。科学进步,4(5),EAAP9661。https://doi.org/ 10.1126/sciadv.aap9661 Budd,A.M.,Cooper,M.K.,Le Port,A.,Schils,T.等。(2021)。使用环境DNA在五十年内,首次检测了密克罗尼西亚关岛的急性濒危扇形的锤头鲨(Sphyrna Lewini)。生态指标,127,107649。https://doi.org/10.1016/j.ecolind.2021.107649 Bustin,S.A.(2009)。MIQE指南:最少发表定量实时PCR实验的信息。临床化学,55(4),611 - 622。https://doi.org/10.1373/clinchem.2008.112797 Caza-Allard,I.&Bernatchez,L。(2022)。生物和非生物因素对鱼环境DNA的产生和降解的影响:一种实验评估。环境DNA,4(2),453 - 468。https://doi.org/10.1002/edn3.266 Collins,R.A.,Wangensteen,O.S.,O.S.,O'Gorman,E.J. &Genner,M.J。(2018)。海洋中环境DNA的持久性
摘要山药(Dioscorea spp。)是在热带和亚热带地区种植的经济上重要的农作物,产生了块根的根源,可作为主食,收入来源,也是各种药物前体的绝佳来源。山药的产量受到疾病和害虫的侵扰以及一系列非生物应力的约束。遗传改善可以大大减轻这些挑战,提高生产率,扩大山药市场并增加经济增长。然而,农作物的几种内在属性减少了山药育种的进展。高级基因工程(例如序列特异性核酸酶编辑的基因组编辑)已成为传统繁殖技术的互补方法。主要是,用于基因组编辑的群集定期间隔短的短质子重复/CRISPR相关蛋白(CRISPR/CAS)系统为基因组时代提供了可靠的平台,用于基因功能分析和作物改善。与其他主食块茎作物(如木薯和地瓜)相比,对改善山药物种的研究仍然不足。因此,探索途径以使这种探索不足的作物中的遗传获得的途径至关重要。本评论的重点是应用CRISPR/CAS技术进行YAM改进的进度和前景。该研究详细介绍了目前可用的CRISPR/ CAS工具,用于YAM基因组工程,并探讨了该工具包在减轻YAM生产和消费中遇到的各种挑战方面的潜在应用。此外,我们还深入研究了与这项技术相关的挑战以及将这些挑战最小化的改进。本文提供的见解为YAM改进提供了指南,以增加这种不足和利用不足的资源的遗传收益。
由人工智能(AI)和生成AI,大数据分析和机器学习提供动力的智能产品平台(SPP)之间的互锁仍处于起步阶段。现代技术驱动的SPP促进了适合为环保经济提供环保产品的个性化产品设计和制造。在这项研究中,我们开发了与SPP,大数据分析,机器学习和循环经济之间的互链链接有关的框架。为了测试我们的框架,我们根据从中国运营的200多名汽车行业专业人员收集的数据应用结构方程建模。我们的结果表明,spp和大数据分析是制造环境友好产品的核心决定因素,最终促进了循环经济应用。spp在创新产品设计和促进相关制造程序中起关键作用。大数据分析显着地介入了SPP应用程序中。SPP中的机器学习和灵活性在加强环保结果中扮演调节作用。SPP在大数据分析和环境友好的循环经济中发挥的中介作用是令人鼓舞的。作为AI和生成AI提供支持的SPP是一种新兴现象,我们的研究为这一新知识维度做出了贡献。我们通过讨论我们的研究的理论和实际含义,其局限性以及未来研究的方向来结束本文。
3 Sw. Power Pool, Inc. , 146 FERC ¶ 61,130 (2014)(批准综合市场自 2014 年 3 月 1 日起启动和运营的命令)。4 命令 P 1。5 关于发电互连,SPP 发电机互连程序(SPP 开放接入输电费率(“费率”)附件 V)或发电机互连指南中均未定义混合资源。关于 SPP 的综合市场,截至本报告提交时,SPP 费率附件 AE 和 SPP 综合市场市场协议(“协议”)均未定义混合资源。协议发布于:https://www.spp.org/spp-documents-filings/?id=18162。