摘要 - 配备了四个独立的轮毂电动机的自主车辆,赋予了有益的设计灵活性,并使系统过度插入。扭矩分配渗透的策略决定了系统的性能,并标志着其能耗。在本文中,从车辆性能和能源消耗的角度开发了两个完整的新型控制体系结构。通过合并两个不同的控制水平来采用级联的控制策略。高级通过基于线性参数变化(LPV)系统框架中的最佳H∞控制的集中式方法来区分,以及基于问题解耦的分散方法,其中提出了使用超级扭转滑动滑动模式(STSM)控制的解决方案。两种方法均由决策层监督,以促进关键驾驶情况下的稳定目标。在低级别,使用原始扭矩分配策略实现了基于直接偏航控制(DYC)以及速度控制的稳定性控制。已经设计了一组全面的多四个多目标策略,以提议的扭矩分配配置为中心。这些策略涵盖了动态在线优化,使用高效的顺序二次编程(SQP)方法进行了专业解决,以及基于数据驱动的算法的唯一离线优化。在Simulink/Matlab和Scaner TM Studio车辆动力学模拟器之间的关节模拟中,对所提出的架构进行了测试和验证。模拟结果表明,在自动驾驶的轮驱动电动汽车的高水平和低水平上,稳定性,稳定性和能源效率都有很大的提高。
摘要:可再生能源与活性热电厂的整合有助于全球绿色环境。要实现可再生 - 热杂交系统的最大可靠性和可持续性,需要考虑大量约束,以最大程度地减少情况,这是由于可再生能源的不可预测性而产生的。在风集成放松管制的系统中,风电场需要在运行日期之前向独立系统操作员(ISO)提交发电场景。基于他们提交的出价,ISO安排了来自不同生成站的发电,包括热和可再生。由于风流的不确定性质,总是有可能不填充风电场的日程安排量。市场中这种违规行为可能会对发电公司施加经济负担(即失衡成本)。太阳能光伏电池可用于减少放松管制系统中不可预测的风饱和度的不利经济影响。本文为太阳能光伏和风电场的混合操作提供了一致,胜任和有效的操作方案,以最大程度地降低不平衡成本,这是由于实际风速和预测风速之间的不匹配而导致的不平衡成本。修改的IEEE 14-BUS和修改IEEE 30总线测试系统已用于检查所提出的方法的有用性。在这项工作中使用了三种优化技术(即,序列二次编程(SQP),智能花优化算法(SFOA),蜂蜜ba算算法(HBA))进行了比较研究。在这里提出了总线加载因子(BLF),以识别系统中最敏感的总线,用于放置风电场。SFOA和HBA优化技术已在这种类型的经济评估问题中第一次使用,这是本文的新颖性。在此处引入了总线加载因子(BLF),以识别系统中最敏感的总线。实施工作后,已经可以看到,太阳能光伏系统的运行减少了不平衡成本对可再生综合失调电源系统的不利影响。