这是根据Creative Commons归因许可条款(https://creativecommons.org/licenses/4.0)的开放访问工作。请注意,重复使用,重新分配和复制尤其要求作者和来源被记住,并且单个图形可能需要特别法律规定。该许可受Beilstein档案术语和条件的约束:https://www.beilstein-archives.org/xiv/terms。这项工作的确定版本可以在https://doi.org/10.3762/bxiv.2024.58.v1
肌肉收缩由肌节的分子机制驱动。由于磷酸化是肌肉功能的关键调节器,因此鉴定调节性激酶对于了解肌节生物学非常重要。α激酶 3 ( ALPK3 ) 的致病变异会导致心肌病和肌肉骨骼疾病,但人们对这种非典型激酶知之甚少。在这里,我们表明 ALPK3 是肌节 M 带的重要组成部分,并定义了 ALPK3 依赖性磷酸化蛋白质组。ALPK3 缺乏会损害人类心脏类器官和携带致病性截短 Alpk3 变异的小鼠心脏的收缩力。ALPK3 依赖性磷酸肽富含 M 带的肌节成分和泛素结合蛋白 sequestosome-1 (SQSTM1)(也称为 p62)。 ALPK3 相互作用组分析证实了其与 M 带蛋白(包括 SQSTM1)的结合。在模拟心肌病 ALPK3 突变的人类多能干细胞衍生心肌细胞中,SQSTM1 的肌节组织和 M 带定位异常,这表明该机制可能是疾病发病机制的基础。
摘要:神经退行性疾病的发作涉及病理机制的复杂相互作用,包括蛋白质聚集,氧化应激和自噬受损。本综述着重于神经退行性疾病中氧化应激与自噬之间的复杂联系,突出了自噬作为疾病发病机理的关键。活性氧(ROS)在细胞稳态和自噬调节中起双重作用,并破坏了氧化还原信号导致神经变性的氧化物。NRF2途径的激活代表了一种关键的抗氧化剂机制,而自噬通过降解改变的细胞成分来保持细胞稳态。p62/SQSTM1,NRF2和KEAP1之间的相互作用是细胞应激反应必不可少的调节途径,其失调会导致自噬和骨料积累受损。靶向NRF2 -P62/SQSTM1途径有望治疗干预,减轻氧化应激和保留细胞功能。此外,本综述探讨了内源性大麻素系统与NRF2信号传导的潜在协同作用。需要进一步的研究来阐明所涉及的分子机制并制定针对神经变性的有效治疗策略。
摘要 克罗恩病 (CD) 患者的肠粘膜被粘附侵袭性大肠杆菌 (AIEC) 异常定植。AIEC 感染后,宿主细胞中会诱导自噬以抑制细菌细胞内的复制。但其潜在机制仍然未知。在这里,我们研究了 EIF2AK4-EIF2A/eIF2 a -ATF4 通路在 AIEC 感染自噬反应中的作用。我们发现,用 AIEC 参考菌株 LF82 感染人肠上皮 T84 细胞会激活 EIF2AK4-EIF2A-ATF4 通路,磷酸化 EIF2AK4、磷酸化 EIF2A 和 ATF4 水平升高就是明证。EIF2AK4 耗竭抑制了 LF82 感染后自噬激活,导致 LF82 细胞内复制增加和促炎细胞因子产生增加。从机制上讲,EIF2AK4 耗竭抑制了 LF82 诱导的 ATF4 与多个自噬基因(包括 MAP1LC3B、BECN1、SQSTM1、ATG3 和 ATG7 )的启动子结合,进而抑制了这些基因的转录。LF82 感染野生型 (WT) 而非 eif2ak4 ¡ / ¡ ,小鼠激活了 EIF2AK4-EIF2A-ATF4 通路,诱导了肠细胞中的自噬基因转录和自噬反应。因此,eif2ak4 ¡ / ¡
使用含有蛋白酶抑制剂的RIPA裂解缓冲液(Keygen,Nanjing,中国)从大脑和肠道组织中提取蛋白质(PMSF; Biosharp; Biosharp,Hefei,中国)和磷酸酶抑制剂鸡尾酒(Medchem Express(Medchem Express,Shanghai,Chine))。用BCA蛋白质测定试剂盒(Keygen,Nanjing,中国)确定蛋白质浓度。用于蛋白质印迹,通过SDS-PAGE [10%(wt/vol)丙烯酰胺]分离样品(30 mg蛋白),然后转移到硝酸纤维素膜(NC; Pall Corporation,Mexico)中。然后将膜在5%BSA(Gentihold,北京,中国)中被阻塞,然后与兔子抗DRP1(1:1000,细胞信号技术),鼠标抗MFN2(1:1000,ABCAM),兔子抗LC3 A/B(1:1:1:1:1:1:1:1:1:1000,ABBIT ANBI-II III II II II II II II III II元素/uq ABS AB)兔抗复合物v/atp5a(1:1000,abcam),兔子抗SQSTM1/p62(1:1000,细胞信号技术),兔抗VDAC1(1:1000,
MAPT cg01934064 17 44064242 船体搁板 -0.14 0.024 MAPT cg15323584 17 44022846 5'UTR 搁板 0.11 0.009 MAPT cg17569492 17 44026659 5'UTR 岛 0.09 0.019 MAPT cg12727978 17 44075500 船体露天海域 0.08 0.009 TREM2 cg02828883 6 41131823 TSS1500 露天海域 0.08 0.005 TIA1 cg14434028 2 70452453 船体露天海域 0.08 0.036 TIA1 cg13119546 2 70444039 身体 opensea 0.05 0.041 RUNX2 cg16181497 6 45409732 身体 opensea -0.07 0.042 RUNX2 cg12755953 6 45430813 身体 opensea 0.06 0.039 RUNX2 cg04110902 6 45500999 身体 opensea 0.05 0.038 GRN cg06800040 17 42427647 身体 shelf 0.07 0.022 FTLD1m 按亚型分类:TDP Type A C9orf72 vs CTRL MAPT cg15323584 17 44022846 5'UTR shelf 0.17 0.002 MAPT cg12727978 17 44075500 船体 开海 0.15 0.001 MAPT cg17569492 17 44026659 5'UTR 岛 0.1 0.032 MAPT cg19276540 17 44060353 船体 岛 0.08 0.035 RUNX2 cg12041069 6 45341222 船体 搁板 0.15 0.04 RUNX2 cg17636752 6 45391973 船体 岸 0.09 0.036 RUNX2 cg12755953 6 45430813 船体 开海 0.08 0.026 TIA1 cg14434028 2 70452453 身体 开放海 0.13 0.011 TIA1 cg13119546 2 70444039 身体 开放海 0.06 0.047 TIA1 cg15836561 2 70442511 ExonBnd 开放海 0.06 0.028 TBK1 cg23175599 12 64848891 5'UTR 架 0.1 0.026 TREM2 cg02828883 6 41131823 TSS1500 开放海 0.09 0.017 CCNF cg26647200 16 2482775 身体 架 0.09 0.022 GRN cg06800040 17 42427647 车身搁板 0.08 0.031 GRN cg12837296 17 42426483 5'UTR 开海 0.07 0.033 GRN cg23570245 17 42426011 5'UTR 开海 0.06 0.048 GRN cg08491241 17 42421960 TSS1500 开海 0.06 0.05 SQSTM1 cg05578452 5 179255653 车身开海 0.07 0.005 SQSTM1 cg09046399 5 179264098 3'UTR 开海 0.06 0.025 FTLD1m 亚型:TDP C 型 vs CTRL MAPT cg01934064 17 44064242 船体架 -0.16 0.016 MAPT cg17569492 17 44026659 5'UTR 岛 0.08 0.045 MAPT cg26979107 17 44061355 船体岸 0.06 0.016 MAPT cg22635938 17 44039549 5'UTR 公海 -0.06 0.012 MAPT cg01582587 17 44036817 5'UTR 公海 0.05 0.022 TBK1 cg09999583 12 64878162 船体公海-0.1 0.029 TREM2 cg02828883 6 41131823 TSS1500 公海 0.08 0.009
抽象背景二甲双胍(MET)是2型糖尿病的一线治疗方法,在治疗各种疾病(例如心血管疾病,神经退行性疾病,癌症和衰老)中起着有效的作用。然而,依赖MET的抗肿瘤免疫的潜在机制仍有待阐明。方法Mitotempo是线粒体超氧化物的清道夫,废除了MET的抗肿瘤作用,但没有消除抗编程细胞死亡(PD-1)抗体(AB)治疗。因此,我们研究了遇到的抗肿瘤效应的机制。葡萄糖转运蛋白(GLUT)-1,线粒体活性氧(MTROS),干扰素(IFN)-γ,Ki67,自噬标记,NF-E2相关因子2(NRF2)的激活标记和乳腺脂蛋白复合物1(Mammaycin Confictrc 1(Mimamalian Infilc)1(mmAMAMAYCINC)1(MIMMAYCIN COFFILC 1)通过流式细胞仪分析检查淋巴细胞(CD8TIT)。此外,还使用有条件的NRF2和p62小鼠来检测这些标记,并监测体内肿瘤生长。对CD8TIT和肿瘤细胞进行 RNA测序。 黑色素瘤细胞含有IFN-γ受体(IFNγR)细胞质域缺失突变体过表达,并用于使用Seahorse Flux分析仪来表征这些肿瘤细胞的代谢谱。 结果MET给药可提高MTROS和细胞表面Glut-1,从而导致CD8TIT中的IFN-γ产生。 mtros以糖酵解依赖性方式激活NRF2,从而诱导自噬,谷氨酰胺溶解,mTORC1和p62/sqSTM1的激活。RNA测序。黑色素瘤细胞含有IFN-γ受体(IFNγR)细胞质域缺失突变体过表达,并用于使用Seahorse Flux分析仪来表征这些肿瘤细胞的代谢谱。结果MET给药可提高MTROS和细胞表面Glut-1,从而导致CD8TIT中的IFN-γ产生。mtros以糖酵解依赖性方式激活NRF2,从而诱导自噬,谷氨酰胺溶解,mTORC1和p62/sqSTM1的激活。在丝氨酸351(p-p62(S351))上,p62的MTORC1依赖性磷酸化也参与了NRF2的激活。CD8TIT中NRF2的条件缺失消除了MTORC1激活和抗肿瘤免疫。 与抗PD-1 AB的作用协同作用,满足CD8TIT增殖和IFN-γ分泌,从而导致肿瘤细胞中糖酵解和氧化磷酸化的降低。 因此,在CD8TIT中,GLUT-1以及活化的树突状细胞的扩展升高。 此外,缺乏IFNγR信号的肿瘤细胞消除了CD8TIT的IFN-γ的产生和增殖。CD8TIT中NRF2的条件缺失消除了MTORC1激活和抗肿瘤免疫。与抗PD-1 AB的作用协同作用,满足CD8TIT增殖和IFN-γ分泌,从而导致肿瘤细胞中糖酵解和氧化磷酸化的降低。因此,在CD8TIT中,GLUT-1以及活化的树突状细胞的扩展升高。此外,缺乏IFNγR信号的肿瘤细胞消除了CD8TIT的IFN-γ的产生和增殖。
自噬细胞可以抑制早期肿瘤的形成,并可以在晚期促进肿瘤的发展,在肿瘤的发展中起着重要作用。因此,探索自噬相关基因(AAGS)对肝细胞癌(HCC)预后的影响具有潜在的重要性。从TCGA数据库下载的HCC基因表达数据和临床数据中选择了差异表达的AAG,以及人类自噬数据库(HADB)。通过GO功能注释和KEGG途径富集分析来阐明AAG在HCC中的作用。与临床数据结合在一起,我们选择了年龄,性别,等级,阶段,T状态,M状态和N个状态作为COX模型索引,以构建Kaplan Meier(KM)的多元COX模型和生存曲线,以估算患者在高风险组之间的存活率。通过单变量和多元COX回归分析绘制的ROC曲线,我们发现七个具有高表达水平的基因,包括HSP90AB1,SQSTM1,RHEB,HDAC1,HDAC1,ATIC,ATIC,HSPB8和BIRC5与HCC患者预后不良有关。然后,ICGC数据库用于验证模型的可靠性和鲁棒性。因此,由自噬基因构建的HCC的预后模型可能有效地预测了总体生存率,并有助于发现HCC患者的最佳个性化靶向疗法,这可以为患者提供更好的预后。
抽象的大型噬菌/自噬是一种进化保守的途径,负责清除胞质聚集蛋白,细胞器受损或入侵的微生物。功能失调的自噬导致货物的病理积累,这与一系列人类疾病有关,包括神经退行性疾病,传染性和自身免疫性疾病以及各种形式的癌症。在动物模型中的累积工作,遗传工具的应用和药物活性化合物,提出了自噬调节中疾病中的潜在治疗价值,例如亨廷顿,沙门氏菌感染或胰腺癌。正在探索自噬激活与抑制策略,而自噬在病理生理学中的作用并行研究。然而,自噬调节剂的临床前和临床发展的进展受到选择性药理学剂和生物标志物的缺乏,从而揭示了其对各种形式的自噬和细胞反应的精确影响。在这里,我们总结了自噬相关药物发现中已建立的新策略,并指出了建立更有效发现自噬选择性药物基因剂的途径。有了这些知识,对自动phagy的治疗性开发的现代概念可能会变得更加合理。缩写:ALS:肌萎缩性侧硬化; AMPK:AMP激活的蛋白激酶; ATG:自动phagy相关基因; Autac:靶向自噬的嵌合体;中枢神经系统:中枢神经系统; CQ:Chlor Oquine; GABARAP:Aγ-氨基丁酸A型受体相关蛋白; HCQ:羟氯喹; Lytac:溶酶体靶向嵌合体; MAP1LC3/LC3:微管相关蛋白1轻型链3; MTOR:雷帕霉素激酶的机械靶标; NDD:神经退行性疾病; PDAC:胰腺导管腺癌; PE:磷脂酰乙醇胺; PIK3C3/VPS34:磷脂酰肌醇3-激酶催化亚基3型; PTDINS3K:III类磷脂酰肌醇3-激酶; PTDINS3P:3-磷酸磷脂酰肌醇; protac:靶向蛋白水解嵌合体; SARS-COV-2:严重的急性呼吸综合征冠状病毒2; SQSTM1/p62:隔离1; ULK1:UNC-51喜欢自噬激活激酶1。
摘要AMPK促进分解代谢并抑制合成代谢的细胞代谢,以在能量应激期间促进细胞存活,部分通过抑制MTORC1,这是一种合成代谢激酶,需要足够水平的氨基酸。我们发现缺乏AMPK的细胞显示出在氨基酸剥夺长期导致的营养应激期间凋亡细胞死亡增加。我们假定自噬受损解释了这种表型,因为一种普遍的观点认为AMPK通过ULK1的磷酸化启动了自噬(通常是亲生响应)。出乎意料的是,在缺乏AMPK的细胞中,自噬仍然没有受损,正如多个细胞系中的几个自噬读数所监测的那样。更令人惊讶的是,在氨基酸剥夺期间,不存在AMPK的ULK1信号传导和LC3B脂质增加,而AMPK介导的ULK1 S555的磷酸化(拟议启动自噬的站点)在氨基酸戒断或药理学MTORC1抑制后降低了ULK1 S555(拟议启动自噬)的磷酸化。此外,用化合物991,葡萄糖剥夺或氨基酸戒断引起的AICAR钝化自噬的AMPK激活。这些结果表明AMPK激活和葡萄糖剥夺抑制自噬。作为AMPK控制的自噬在意外方向上,我们检查了AMPK如何控制MTORC1信号传导。矛盾的是,我们观察到在长时间氨基酸剥夺后缺乏AMPK的细胞中MTORC1的重新激活受损。这些结果共同反对既定的观点,即AMPK促进自噬并普遍抑制MTORC1。这些发现促使对AMPK及其对自噬和MTORC1的控制如何影响健康和疾病进行了重新评估。此外,在延长氨基酸剥夺的背景下,它们揭示了AMPK在抑制自噬和MTORC1信号传导中的意外作用。关键字:mtor; S6K1; 4EBP1; lc3b; ULK1; ATG16L1;化合物991;葡萄糖剥夺; aicar;细胞存活缩写:AAS:氨基酸; ADP:双磷酸腺苷; AICAR:5-氨基咪唑-4-羧酰胺核糖核苷酸; AMP:单磷酸腺苷; AMPK:AMP激活的蛋白激酶; ATG14:自噬相关14; ATG16L1:自噬相关16,如1; ATG5:自噬相关5; BAFA1:Bafilomycin A1; DKD:双重击倒; DKO:双淘汰赛; ECL:增强的化学发光; LC3B:微管相关蛋白1A/1B轻链3B; MEF:小鼠胚胎成纤维细胞; MTORC1:雷帕霉素复合物1的机械靶标; MTORC2:雷帕霉素复合物2的机械靶标; p62:泛素结合蛋白p62,又名SQSTM1/secestosoms 1; S6K1核糖体蛋白S6激酶1; 4EBP1,EIF4E [真核起始因子4E]结合蛋白1; TEM:透射电子显微镜; ULK1:UNC-51样激酶1; VPS34,液泡蛋白排序34。
