摘要 - 使用常规的组织学和Cajal的银浸渍方法对Oegopsid鱿鱼中大脑的构成培养。Oegopsid鱿鱼在达到成年少年之前花费了一个特定的偏周期。在刚刚组成的副群中,脑叶(下部和中间运动中心)仅在大脑的腹侧区域(接管质量,SBM)和大脑背侧部分的发育(phosphaigageal质量,SPM,SPM)显示出杂色延迟。在SPM中,轴突的拱形束(横向拱形,TA)越过了口腔向内的区域。在隔着时期初期,基底裂片和前瓣前叶(较高的运动中心)开始沿着TA发展。稍后,一对纵向轴突段(phip脚的梯子,Sprl)从TA前方伸长,辅助叶(用于记忆和学习的中心)和上颊叶开始沿Sprl区分开。在隔着时期,嗅觉中心的裂片和花梗叶在每个光学区域都很好地发展。在晚期的副群中,所有大脑裂片都可以识别,并且大脑的表现与成年人的组织基本相同。随着附件裂片的惊人生长,SPM的主要区域大大增加了体积。SBM在前方和后方方向伸长,the端(前SBM)与中间SBM分离。,神经胶体以分层排列的神经膜变得非常大。在少年中,神经胶体的相对体积与周期层增加,而神经元在某些裂片中明显扩大。副腔发育期间高等运动中心的发展迟缓表明,太平洋t. t. t. t. paralarvae不是活跃的掠食者,而是悬浮液喂食者。
头足类动物在无脊椎动物中以认知能力、适应性伪装、新颖结构和通过 RNA 编辑重新编码蛋白质的倾向而引人注目。然而,由于缺乏遗传上可处理的头足类模型,这些创新背后的机制尚不清楚。CRISPR-Cas9 等基因组编辑工具允许在不同物种中进行定向突变,以更好地将基因和功能联系起来。一种新兴的头足类模型 Euprymna berryi 产生大量胚胎,这些胚胎可以在其整个生命周期中轻松饲养,并且具有已测序的基因组。作为原理证明,我们在 E. berryi 中使用 CRISPR-Cas9 来靶向色氨酸 2,3 双加氧酶 (TDO) 基因,色氨酸 2,3 双加氧酶 (TDO) 是形成色素色素所需的酶,色素色素是头足类动物眼睛和色素细胞中的色素。将靶向 tdo 的 CRISPR-Cas9 核糖核蛋白注射到早期胚胎中,然后培养至成年。出乎意料的是,注射的标本是有色的,尽管通过对注射动物 (G0s) 进行测序验证了目标位点的插入缺失。经过多代繁殖的 TDO 纯合敲除系也有色。令人惊讶的是,E. berryi 中也存在编码吲哚胺 2,3 双加氧酶 (IDO) 的基因,该酶在脊椎动物中催化与 TDO 相同的反应。使用 CRISPR-Cas9 对 tdo 和 ido 进行双敲除产生了白化表型。我们展示了这些白化病在双光子显微镜对大脑中的 Ca 2+ 信号进行体内成像中的实用性。这些数据表明,制造基因敲除头足类动物系的可行性,可用于对这些行为复杂的生物体的神经活动进行实时成像。
PTB 在 SQUID 开发方面发挥着全球领先作用。这些超导量子干涉装置是用于高精度测量磁通量极小变化的传感器。PTB 的 SQUID 用于各种类型的测量。尽管它们已在生物磁实验中使用了二十年,例如用于检测人类心脏或大脑的非常微弱的磁场,但它们仍不断参与新的计量发展。SQUID 可用作各种配置中的灵敏电流传感器或完整的集成磁感应计。PTB 不仅提供 SQUID 芯片本身,还提供电子设备和计量技术,以便在相应的低温装置和实验外围设备中实现传感器。两个国际合作项目也采用了同样的方法。带有2个Tes光子计数器的探测器模块和带有2个电流传感器的sQuiD传感器芯片
这是根据Creative Commons归因许可条款(https://creativecommons.org/licenses/4.0)的开放访问工作。请注意,重复使用,重新分配和复制尤其要求作者和来源被记住,并且单个图形可能需要特别法律规定。该许可受Beilstein档案术语和条件的约束:https://www.beilstein-archives.org/xiv/terms。这项工作的确定版本可以在https://doi.org/10.3762/bxiv.2024.61.v1
英国频道是东北大西洋地区最高的长期鱿鱼着陆点,使鱿鱼成为该地区运作的塞尔萨尔遗迹所利用的最有价值的资源之一。该资源由两个短寿命的长鱿鱼物种:loligo forbesii和L. vulgaris组成,它们的外观相似(它们没有被钓鱼者区分开),但在其生命周期的时间上有所不同:在L. forbesii中,在7月,在L. dufgaris招募的招聘峰会出现在L. dufgaris peak in Nevember中。头足类物种(例如Loligo spp。)的丰度和分布取决于有利的环境条件,以支持生长,繁殖和成功募集。This study investigated the role of several environmental variables (bottom temperature, salinity, current velocity, phosphate and chlorophyll concentrations) on recruitment biomass (in July for L. forbesii and November for L. vulgaris ), as based on environmental data for pre-recruitment period from the Copernicus Marine Service and commercial catches of French bottom trawlers during the recruitment period over the years 2000 to 2021.为了说明环境描述符与生物响应之间的非线性关系,将一般添加剂模型(GAM)拟合到数据中。在各自的招聘期内,获得了单独的模型,以预测法拉克利斯和福布西生物量指数。这些模型解释了生物量指数变化的很高比例(L. forbesii为65.8%,而福尔加里(L. vulgaris)的差异为56.7%),并且可能适合预测资源的丰度(以生物量)和空间分布。此类预测是指导经理的理想工具。由于这些模型可以在开始季节开始前不久进行,因此它们的常规实施将在实时填充管理中进行(由与短寿命物种打交道的薄薄的科学家促进)。
1.委托工作目的(1)研究课题的最终目标本研究的目的是实现一种具有高抗磁场能力和磁场灵敏度的高温超导SQUID磁传感器,主要针对磁场偏差型(梯度仪)传感器配置方法和制造技术进行基础研究。为此,在三年的工作中,我们对采用高性能约瑟夫森结技术的交叉布线和氧化物薄膜堆叠技术等制造技术进行了研究,这些技术是在波动磁场下稳定工作和高灵敏度的关键。首先,优化包括接合阻挡材料在内的制造条件。在这些优化的制造条件下,我们将制造和评估磁场偏差型传感器,并建立一种构建高平衡和高灵敏度磁场偏差型传感器的方法。此外,以实现高温超导SQUID磁传感器在密闭容器中长期稳定运行为目标,我们还将开展传感器冷却和安装方法的基础研究。我们主要研究了液氮和小型冰箱相结合的冷却方法,研究了最大限度减少外部热量流入的实施方法、冰箱的排气热处理方法和降噪方法,目的是获得有关冷却和安装方法的知识。使传感器长期稳定运行。 作为本研究最终目标的高温超导SQUID磁传感器的性能如下。 ・磁场调制电压宽度:平均 60 µV 以上(在磁屏蔽室中测量) ・磁场偏差型传感器的不平衡:1/10 4 以下(在磁屏蔽室中测量) ・磁场偏差灵敏度(@ 1 kHz):1 pT/(Hz) 1/2 m 或以上(传感器噪声在磁屏蔽室内测量,磁通-电压转换系数在磁屏蔽室外测量)关于冷却和安装技术,以下是最终目标。 ・将在常压室温环境和地球磁场中对内置于密封容器中的高温超导SQUID磁传感器进行连续运行测试,并确认三天或更长时间的稳定运行。 (2) 为了实现最终目标必须克服或澄清的基本问题 为了实现最终目标必须克服的基本问题如下。 ①耐高磁场高温超导SQUID磁传感器配置方法的建立①-1 SQUID基本性能的提高SQUID磁传感器是一种宽带矢量传感器,以超高灵敏度检测与检测线圈交联的磁场,与其他磁性传感器类似,它具有其他磁性传感器所没有的功能。当使用SQUID作为磁传感器时,形成包括磁通锁定环电路(以下称为“FLL电路”)的反馈环路以使输出线性化,并且如果磁场波动较大,则工作点被固定(锁定)。随着时间的推移,反馈将无法跟随它,并且工作点会波动(失锁),从而无法进行连续测量。因此,当使用SQUID磁传感器,特别是使用一个检测线圈的磁力计传感器(磁力计)时,在地磁准静止条件下,例如在没有较大姿态变化的海底,或者当在电磁场施加磁力时使用对于勘探或无损检测领域来说,对磁场波动的跟踪能力(能够保持锁定状态的磁场随时间变化的最大dB/dt,以下简称“间距”)非常重要。有必要提高成卷率。对于稍后将讨论的磁场偏差型传感器,这也是提高对磁场不平衡分量的时间波动和意外电磁噪声的抵抗力的重要问题。转换速率取决于FLL电路的带宽,但它与磁场调制电压宽度(V)成正比,这是SQUID的基本性能。另一方面,V是SQUID基本规则
已在薄膜装置中演示了 77 K 下的 SQUID 行为。该装置相当稳定和坚固,可以作为功能性仪器的基础。这将需要结合超导通量变压器,这需要多层薄膜,目前超出了我们的能力。可以在基本 SQUID 图案上进行有用且简单的开发工作,以改善聚焦效果,并优化各向异性双晶技术中可用的参数。
我们的装置由1/4波长超导谐振器和栅极定义DQD组成,如图1(a)所示。谐振器由超导量子干涉仪(SQUID)阵列[29]组成,其谐振频率fr可调。每个SQUID包含两个约瑟夫森结,其电感与通量有关。在本文中,我们设定谐振器频率fr = 6.758 GHz,总衰减线宽、内部损耗率和外部损耗率为(κ,κi,κe)/2π=(58.9,36.9,22.0)MHz。由于 SQUID 阵列的电感很高,谐振器阻抗 Zr≈1kΩ,远远超过典型共面波导的 50Ω。DQD 由 GaAs/AlGaAs 异质结构中的顶部金属栅极定义,标记为 L、P、U、R 和 D。电子被捕获在 DQD 中,其中两个点的电化学电位可以通过栅极 L、P 和 R 进行调制。然后
尽管对形态学、分子学和组合数据集进行了多次分析,但鱿鱼和乌贼(头足纲:十足目)之间的系统发育关系几十年来一直难以明确。最近,对完整线粒体基因组和数百个核基因座的分析也得出了类似的模棱两可的结果。在本研究中,我们通过增加分类学广度和利用几个分类群的更高质量的基因组和转录组数据,重新评估十足目关系的假设。我们还采用分析方法来 (1) 识别转录组数据中的污染,(2) 更好地评估模型的充分性,以及 (3) 考虑潜在的偏差。使用这个更大的数据集,我们一致地恢复了一个由 Myopsida(闭眼鱿鱼)、Sepiida(乌贼)和 Oegopsida(睁眼鱿鱼)组成的演化支,它是 Sepiolida(短尾和瓶尾鱿鱼)演化支的姐妹。 Idiosepiida(小鱿鱼)一直被认为是所有采样的十足目谱系的姊妹群。此外,将加权的 Shimodaira-Hasegawa 检验应用于我们的一个较大的数据矩阵,拒绝了这些序数级关系的所有替代方案。目前,可用的核基因组规模数据支持体型相对较大的十足目头足类的嵌套进化枝,但小鱿鱼除外,但需要改进分类单元采样和额外的基因组数据来严格测试这些新假设。
云计算提供了存储不断增长的基因型 - 表型数据集,以实现Precision Medicine的全部潜力。但是,由于该数据的敏感性以及跨州和国家 /地区的数据隐私法的拼凑而成,因此有必要进行其他安全保护,以确保数据隐私和安全性。在这里,我们提出了鱿鱼,这是用于存储和分析基因型 - 表型数据的可解决的database。使用鱿鱼,基因型 - 表型数据可以以加密形式的低安全性,低成本的公共云存储,研究人员可以在没有公共云可以解密数据的情况下进行策略查询。我们通过复制各种常用的计算,例如多基因风险得分,GWAS的同胞,MAF滤波,MAF滤波和患者相似性分析,包括合成和英国生物库数据的患者相似性分析,从而证明了鱿鱼的可用性。我们的工作代表了一个新的可扩展平台,可以实现精密医学而无需安全和隐私问题。