用于FPGA的摘要SRAM需要更高的稳定性和低功耗。8T SRAM单元随着供应电压的降低而降低了写入稳定性。10T SRAM单元具有较高的写入稳定性,因为其中一个逆变器中的上拉路径中使用了截止开关。具有低功耗和较高稳定性的SRAM阵列的设计至关重要。so,已经设计并比较了使用8T和10T SRAM细胞的1KB SRAM阵列进行不同的设计指标。写0和写1功率较低1.98×,10t sram阵列中的3.52××SRAM阵列在0.9V DD,SS角下方。由于在10T SRAM单元中使用高V th晶体管,读取功率在SS角的0.9V V dd较低1.6倍。保持0时的泄漏功率在10T SRAM阵列中低于1.13×,比在0.9V V dd处的FF拐角处的8T SRAM阵列中的泄漏功率。对设计指标进行了广泛的电源电压评估。设计在45nm技术节点中以Cadence Virtuoso实现。
SRAM 闪存 EEPROM MRAM 非易失性 − √ √ √ 写入性能 √ − − √ 读取性能 √ − − √ 耐久性 √ − − √ 功率 − − − √ MRAM 是一种真正的随机存取存储器;允许在内存中随机进行读取和写入。MRAM 非常适合必须存储和检索数据而不会产生较大延迟损失的应用程序。它提供低延迟、低功耗、无限耐久性和可扩展的非易失性存储器技术。 ASxxxx208 具有串行外设接口 (SPI)。SPI 是一种同步接口,它使用单独的数据和时钟线路来帮助保持主机和从机的完美同步。时钟告诉接收器何时对数据线上的位进行采样。这可以是时钟信号的上升沿(从低到高)或下降沿(从高到低)或两个沿;有关更多详细信息,请参阅本数据表中的指令序列。当接收器检测到正确的边沿时,它可以锁存数据。 ASxxxx208 用双 CS# 连接两个四通道 SPI 设备,提供 8 位 I/O 数据路径。每个设备都可以使用自己的寄存器组进行配置和独立操作,由单独的 CS# 进行管理。ASxxxx208 采用 96 球 FBGA 封装。该封装具有单独的球,用于 CS1#、CLK1# 和 INT1(双四通道 SPI 设备 1)以及 CS2#、CLK2# 和 INT2(双四通道 SPI 设备 2)。该封装与类似的低功耗易失性和非易失性产品兼容。
非易失性 − √ √ √ 写入性能 √ − − √ 读取性能 √ − − √ 耐久性 √ − − √ 功率 − − − √ MRAM 是一种真正的随机存取存储器;允许在内存中随机进行读取和写入。MRAM 非常适合必须存储和检索数据而不会产生较大延迟的应用程序。它提供低延迟、低功耗、无限耐久性、高性能和可扩展的内存技术。AS30xxB16 采用小尺寸 48 球 FBGA(10 毫米 x 10 毫米)封装,支持 16Mb、32Mb 和 32Mb 密度。此封装与类似的低功耗易失性和非易失性产品兼容。AS30xxB16 提供工业扩展(-40°C 至 125°C)工作温度范围。每个单元在发送给客户之前都要经过 48 小时的老化。
英飞凌的 144 Mbit 四倍数据速率 (QDR™)-II+ 同步 (Sync) SRAM 采用英飞凌专利的 RadStop™ 技术设计,针对太空以及其他恶劣环境应用进行了优化。144 Mbit QDR™ II+ SRAM 是下一代 QDR™ II+ SRAM 设备,延续了航天级传统,比上一代具有更低的功耗和更高的性能。QDR™ II+ SRAM 提供 x18/x36、双字/四字数据总线配置,并带有或不带有片上终端以优化功耗。QDR™ II+ SRAM 架构提供低延迟和随机内存访问能力,这是外部缓存存储器等高性能应用所需的。英飞凌的 QDR™ II+ 同步 SRAM 系列提供随机
1. 简介 当今社会,微电子技术被广泛应用于各种设备中。电子设备在世界范围内的快速普及,促使人们开始审视新技术,尤其是存储器。存储器越来越多地用于生物、无线和可实现设备中。存储器的各个部分在现代 VLSI 系统中组织起来。半导体存储器是 VLSI 架构不可或缺的一部分。RAM(随机存取存储器)有两种形式:SRAM(静态随机存取存储器)和 DRAM(动态随机存取存储器)[2]。动态一词表示理想存储电容器的电荷必须定期刷新,这就是 DRAM 很少使用的原因。为了提高稳定性和功耗,已经提出了许多SRAM单元设计,但传统的6T单元仍然提供了尺寸和性能的良好平衡,因为传统的6T单元具有非常紧凑和简单的结构,但是其操作电压最小并且受到相互冲突的读写稳定性要求的限制,因此它不用于超低电压操作。有几种针对存储器单元的设计提案以提高速度和功率,其中一种技术专注于提高SNM的低功耗(其他存储器配置(7T,8T,9T)各有优缺点)[1]。六个MOSFET组成一个典型的SRAM单元。四个晶体管(PM0,PM1,NM0和NM1)存储一位并形成两个交叉耦合的反相器。有两种稳定状态,用数字 0 和 1 表示。传统的 6T 单元很简单,但在低压下稳定性较差,因此我们努力通过各种方法提高其读写稳定性,例如双轨电源、负位线、带动态反馈管理的单位线等。然而,为了正常运行,6T SRAM 的
图 1:部件编号订购选项 ................................................................................................................................ 5 图 2:器件引脚排列 ................................................................................................................................ 7 图 3:142 球 FBGA ................................................................................................................................ 9 图 4:142 球 FBGA ................................................................................................................................ 10 图 5:功能框图 ...................................................................................................................................... 11 图 6:上电行为 ...................................................................................................................................... 12 图 7:写操作 ...................................................................................................................................... 17 图 8:写操作(E# 控制) ................................................................................................................ 18 图 9:总线周转操作 ................................................................................................................................ 19 图 10:读操作 ........................................................................................................................................ 20 图 11:4 字异步页面模式与传统异步模式的比较 ...................................................................................... 21 图 12:页面模式功能框图 ................................................................................................................ 22 图13:异步页读操作 ...................................................................................................................... 22 图 14:异步页写操作 ...................................................................................................................... 23 图 15:页写到单次写时序图 .............................................................................................................. 23 表 1:技术比较 ...................................................................................................................................... 4 表 2:有效组合列表 ................................................................................................................................ 6 表 3:信号描述 ...................................................................................................................................... 7 表 4:上电/断电时序和电压 ................................................................................................................ 13 表 5:器件初始化时序和电压 ................................................................................................................ 14 表 6:建议工作条件 ........................................................................................................................ 14 表 7:引脚电容 ........................................................................................................................................................................................................................ 14 表 8:直流特性 ...................................................................................................................................... 15 表 9:磁抗扰度特性 .............................................................................................................................. 15 表 10:交流测试条件 ............................................................................................................................. 15 表 11:绝对最大额定值 ...................................................................................................................... 16 表 12:写操作(W# 控制) ............................................................................................................. 17 表 13:写操作(E# 控制) ............................................................................................................. 18 表 14:写操作 ................................................................................................................................ 19 表 15:读操作 ................................................................................................................................ 20 表 16:页面模式交流时序 ................................................................................................................ 24 表 16:耐用性和数据保留 ................................................................................................................ 24 表 17:热阻规格 .......................................................................................................................... 25........................................................................... 24 表 16:耐久性和数据保留时间 ...................................................................................................... 24 表 17:热阻规格 ...................................................................................................................... 25........................................................................... 24 表 16:耐久性和数据保留时间 ...................................................................................................... 24 表 17:热阻规格 ...................................................................................................................... 25
与过去的技术节点相比,器件的缩小可能会导致常规(未硬化)六晶体管 (6T) SRAM 单元的 SEU 敏感度增加 [8]。尽管 SEU 是一种非破坏性事件,但 SEU 概率的增加可能会对更大规模 SRAM 器件的使用造成越来越大的问题。这在使用高性能数字信号处理器的商用现货产品、太空任务和核电反应堆中尤其如此。由于多个位翻转可能导致同一个字中出现多个错误,因此这是一个更大的问题 [9]。在本文提出的设计中,标准 SRAM 单元经过辐射硬化处理,以减轻 SEU 和 DEU。TICE 存储单元可以自我纠正最多两个同时发生的翻转。为了进一步提高整体可靠性,我们应用布局技术将关键节点尽可能地放置在 TICE 存储单元中。在假设三个同时发生的翻转很少见的情况下,这降低了关键节点同时被击中的可能性。与标准 8T 存储单元和 DICE 存储单元相比,本研究提出的存储单元具有更高的耐辐射性。
SRAM 闪存 EEPROM MRAM 非易失性 − √ √ √ 写入性能 √ − − √ 读取性能 √ − − √ 耐久性 √ − − √ 功率 − − − √ MRAM 是一种真正的随机存取存储器;允许在内存中随机进行读取和写入。MRAM 非常适合必须存储和检索数据而不会产生较大延迟损失的应用程序。它提供低延迟、低功耗、无限耐久性和可扩展的非易失性存储器技术。ASx016A04 具有串行外设接口 (SPI)。SPI 是一种同步接口,它使用单独的数据和时钟线路来帮助保持主机和从机的完美同步。时钟告诉接收器何时对数据线上的位进行采样。这可以是时钟信号的上升沿(从低到高)或下降沿(从高到低)或两个沿;有关更多详细信息,请参阅本数据表中的指令序列。当接收器检测到正确的边沿时,它可以锁存数据。 ASx016A04 采用小尺寸 8 焊盘 WSON 和 8 引脚 SOIC 封装。这些封装与类似的低功耗易失性和非易失性产品兼容。ASx016A04 已在 -40°C 至 125°C 的工作温度范围内进行了测试,并在 125°C 下进行了 48 小时老化测试。
非易失性 − √ √ √ 写入性能 √ − − √ 读取性能 √ − − √ 耐久性 √ − − √ 功率 − − − √ MRAM 是一种真正的随机存取存储器;允许在内存中随机进行读取和写入。MRAM 非常适合必须存储和检索数据而不会产生较大延迟的应用程序。它提供低延迟、低功耗、高耐久性、高性能和可扩展的内存技术。AS3xxx332 采用小尺寸(15mm x 17mm)142 球 BGA 封装。在 1、2、4Gb 密度下,该设备使用一个芯片选择 E#。在此配置中,形成一个 1、2、4Gb 的连续地址空间。在 8Gb 配置中,该封装有两个 4 个芯片组,每个芯片组可单独选择,但不能同时选择。每个芯片组可使用 E1# 和 E2# 选择。在 8Gb 配置中,不得同时选择 E1# 和 E2#,因为两个组共享相同的 I/O 引脚。AS3xxx332 提供工业扩展(-40°C 至 125°C)工作温度范围:这是以结温测量的。
一、SRAM 静态随机存取存储器 (SRAM) 是一种静态存储单元,它使用触发器来存储每位数据。它广泛应用于各种电子系统。SRAM 存储器中的数据不需要定期刷新。与其他存储单元相比,它速度更快,功耗更低。正因为如此,SRAM 是 VLSI 设计师中最受欢迎的存储单元。 SRAM 操作 传统的 6T SRAM 单元由两个背靠背连接的反相器组成。第一个反相器的输出连接到第二个反相器的输入,反之亦然。基本上,SRAM 执行三种操作,即保持、读取和写入操作。 保持操作:在待机操作或保持操作中,字线 (WL) 处于关闭状态。连接到字线和 B 和 BLB 线的存取晶体管也处于关闭状态。为了使 SRAM 以读取或写入模式运行,字线应始终处于高电平。 写入操作:存储数据的过程称为写入操作。它用于上传 SRAM 单元中的内容。写入操作从分配要写入 Bit 的值及其在 Bit' 的互补值开始。为了写入“1”,Bit 预充电高电压,并将互补值“0”分配给 Bit'。当通过将 WL 置为“高”将 M5 和 M6 设置为 ON 状态时,在 Bit 处分配的值将作为数据存储在锁存器中。M5 和 M6 MOS 晶体管设计得比单元 Ml、M2、M3 和 M4 中相对较弱的晶体管强得多,因此它们能够覆盖交叉耦合反相器的先前状态。读取操作:恢复数据的过程称为读取操作。它用于获取内容。读取操作首先将字线“WL”置为高电平,这样在将位线和位线预充电至逻辑 1 后,访问晶体管 M5 和 M6 均将启用。第二步是将存储在数据和数据线中的值传输到位线,方法是将位保留为其预充电值,并通过 M4 和 M6 将位线放电至逻辑 0。