摘要 — 在本文中,我们提出了一种基于碳纳米管 (CNT) 场效应晶体管 (CNFET) 的静态随机存取存储器 (SRAM) 设计,该设计在 5 纳米技术节点上基于性能、稳定性和功率效率之间的权衡进行了优化。除了尺寸优化之外,还评估和优化了包括 CNT 密度、CNT 直径和 CNFET 平带电压在内的物理模型参数,以提高 CNFET SRAM 性能。基于亚利桑那州立大学 [ASAP 7 纳米 FinFET 预测技术模型 (PTM)] 库,将优化的 CNFET SRAM 与最先进的 7 纳米 FinFET SRAM 单元进行了比较。我们发现,与 FinFET SRAM 单元相比,所提出的 CNFET SRAM 单元的读取、写入 EDP 和静态功率分别提高了 67.6%、71.5% 和 43.6%,稳定性略好。 CNFET SRAM 单元内部和之间的 CNT 互连被视为构成全碳基 SRAM (ACS) 阵列,本文第二部分将对此进行讨论。本文实施了一个具有铜互连的 7 纳米 FinFET SRAM 单元并将其用于比较。
高能电荷颗粒。电子孔对。电场将这些电子孔对分开,然后在敏感节点上收集。由于电荷积累而产生了短的电压脉冲。[5]。高密度记忆以及电子设备在生物应用中至关重要。低电压下运行记忆的主要基本原理是在尽可能少的能量的同时最大化电池寿命。正常6T SRAM单元的读取过程噪声免疫很小。随着电源电压的降低,噪声免疫力显着降低。结果,标准6T SRAM无法在低电源电压下操作。已知脱钩的7T和8T SRAM细胞的利用是通过将存储节点与位线分离出来,从而增强了读取操作过程中的噪声免疫。但是,值得注意的是,这些细胞具有相当大的泄漏功率。即使数百万个SRAM细胞可能保持在“待机状态”状态,记忆的功耗呈指数增长。[6] [7] [8] [9] [10]。嵌入式内存配置已通过现代VLSI(非常大规模的集成)系统增强。在处理RAM时,将DRAM(动态随机访问存储器)和SRAM(静态随机访问存储器)之间的区分至关重要。“静态”一词是指所有组件始终耦合到VDD或VSS的电路,从而消除了浮动节点问题,并允许仅使用电容器和单个晶体管构建DRAM单元。7T SRAM“随机”一词表示可以在需要时访问数据,并在可以存储的任何地方访问。访问需要内存搜索和位存储。每个单元存储一点点。[11] [12] [13]。SRAM单元是由晶体管和闩锁建造的。电容器都用于存储数据和检索数据,但是充电和排放它们的过程需要大量精力和时间。此益处是SRAM细胞广泛使用SOC的主要原因。[14] [15] [16] [17],其中它们是设计和实施的重要组成部分。响应于当前SOC技术的功耗降低和更高生产率的需求增加,已经创建了多种SRAM细胞设计,每种SRAM细胞设计都经过优化,以表现出色。这导致可以存储在给定数量的空间中的记忆量显着增加。
摘要:在航空航天高辐射环境中使用的静态随机记忆(SRAM)细胞已经非常容易受到单事件效应的影响(请参阅)。因此,使用辐射硬化设计(RHBD)概念提出了一个用于软误差恢复的12T SRAM硬化电路(RHB-12T单元)。为了验证RHB-12T的性能,由28 nm CMOS过程模拟了所提出的细胞,并将其与其他硬化的细胞(Quatro-10t,We-Quatro-12t,Rhm-12t,Rhm-12t,Rhd-12t,Rhd-12t和RSP-14T进行比较)。仿真结果表明,RHB-12T单元不仅可以从其敏感节点引起的单事件障碍中恢复,而且还可以从由其存储节点对引起的单事件多节点误击中。所提出的单元格与Quatro-10t /We-Quatro-12t /rsp-14t和1.31×/1.11.11×/1.18×/1.37×更短的写入延迟相比,比We-Quatro-12t sspsssss Spsssssss Spssss Spsssss Spssss Spssss Spssss Spsssss Spssss Spsssss Spsssss Spsssss Spssss Spsssss较短。它还显示出比Quatro-10t /Rhm-12t /Rhd-12t和1.12×/1.04×/1.09×比RHM-12T /RHM-12T /RHD-12T /RSP-14T更高的1.35×/1.11×/1.04×读取稳定性和更高的读取稳定性。所有这些改进都是以稍大的面积和功耗的成本来实现的。
由于 CMOS 的缩放,这些设备的局限性引发了对替代纳米设备的需求。提出了各种设备,如 FinFET、TFET、CNTFET。其中,FinFET 成为最有前途的设备之一,由于其在纳米范围内的低泄漏,它可以替代 CMOS。如今,电子设备在电池消耗方面更加紧凑和高效。由于 CMOS 的缩放限制,CMOS SRAM 已被 FinFET SRAM 取代。已经有两个 FinFET SRAM 单元,它们具有高功率效率和高稳定性。已经对这些单元进行了性能比较,以分析泄漏功率和静态噪声容限。这些单元的模拟是在 20 nm FinFET 技术下进行的。经分析,改进的 9T SRAM 单元的写入裕度实现了 1.49 倍的改进。读取裕度也显示出比本文中比较的现有单元有显著的改善。对于所提出的 0.4 V SRAM 单元,发现保持裕度更好。栅极长度已经改变,以发现栅极长度对读取裕度的影响。
一种基于低功耗改进型 PPN SRAM 单元的存储器阵列的新型设计及其对高速缓存存储器的分析评论 Gavaskar K、Surendar N、Thrisali S、Vishal M 电子与通信工程系 Kongu 工程学院 Perundurai,Erode – 638060,泰米尔纳德邦,印度。邮件 ID:gavas.20@gmail.com 摘要 – 高速缓存存储器是存储重复数据和执行操作的指令所必需的存储空间。现代处理器的速度已经显著提高,但存储器增强主要集中于在更小的空间中存储更多数据并减少延迟的能力。本文提出的基于 PNN 反相器的 10 T SRAM 单元电路由 2 个交叉耦合的 PNN 反相器(1 个 PMOS 和 2 个 NMOS 晶体管)、单端独立读取电路(2 个 NMOS 晶体管)和 2 个存取晶体管(2 个 NMOS)组成。将不同的漏电流控制技术(如 LECTOR 和 KLECTOR)应用于 10T PPN 和 10T PNN SRAM 单元以提高其保持性能,并比较其结果。8X8 存储器阵列由存储器单元、行和列解码器、预充电电路、感测放大器和写入驱动器电路组成。测量了读取、写入和保持操作的各种参数(如延迟、动态功率、功率延迟积、漏功率和静态噪声裕度),并与其他 SRAM 单元进行了比较。CADENCE Virtuoso Tool 用于设计 90 nm 技术中的各种电路。模拟结果表明,与其他单元相比,所提出的 SRAM 单元具有更好的性能,因此它可用于创建阵列结构。与其他阵列结构相比,基于 8X8 10T PNN SRAM 单元的阵列具有更低的功率和更少的延迟。
摘要 — 太空辐射粒子会导致电路故障。它对内存敏感的存储设备尤其敏感。当它影响存储在内存电路中的数据时,会造成中断。标准 6T SRAM 无法缓解这种中断。因此,许多作者提出了各种恢复策略。然而,存储单元效率和软错误概率之间存在权衡。本文介绍了一种极性设计软错误翻转恢复 SRAM 存储单元 (SUR-16T),它可以有效地恢复由于高能粒子撞击而丢失的数据。与上述存储单元相比,SUR-16T 具有出色的写入稳定性、更低的保持功耗和更短的 PVT 变化写入访问时间。此外,在 0.8V 电压下,SUR-16T 的临界电荷比 SEA-14T/ RHBD-13T/ RHMC-12T/ QCCS-12T/ NRHC-14T/ HRRT-13T 高 0.96 倍/ 1.15 倍/ 1.10 倍/ 1.18 倍/ 1.02 倍/ 1.64 倍。此外,所提出的存储单元比现有存储单元具有更高的相对性能系数。
由于采用基于施密特触发器的反相器,与传统的 6T SRAM 单元相比,其 RSNM 明显更高。其他剩余的 SRAM 单元(例如传统的 8T、PPN10T、FC11T 和 ST11T)采用读取去耦技术,其中数据存储节点在读取操作期间与位线完全隔离,导致 RSNM 和 HSNM 的值相同。ST11T SRAM 单元在所有 SRAM 单元中显示最大的 RSNM,因为它的强大单元核心由交叉耦合的基于施密特触发器的反相器对形成。
摘要 - 具有超低泄漏和出色稳定性的静态随机记忆细胞是当代智能设备中设备上层的记忆的主要选择。本文介绍了一个新型的8T SRAM细胞,其泄漏降低并证明是稳定性的。所提出的SRAM单元使用堆叠效果来减少泄漏和传输门作为访问晶体管以增强稳定性。已经根据功耗和静态噪声边缘(RSNM,HSNM和WSNM)分析了所提出的具有堆叠晶体管的拟议的8T SRAM细胞的性能。在22 nm技术节点时,发现基于FIN-FET的8T细胞的功耗为572 PW,与基于CMOS的8T细胞相比,该因子几乎降低了一个因子。此外,对于基于FinFET的新型8T SRAM细胞在22 nm技术节点的情况下,发现功耗被发现减少了一倍。𝟓×𝟏𝟎𝟏𝟎𝟐𝟐𝟐。WSNM,HSNM和RSNM的8T SRAM细胞在0.9 V电压电压下观察到具有FinFET逻辑的8T SRAM细胞的240 mV,370 mV和120 mV。与常规的6T填充细胞相比,所提出的细胞显示了20%,5.11%和7%的WSNM,HSNM和RSNM,这是分数的。还分析了SNM的灵敏度,并报告了温度变化的敏感性。此外,获得的结果证实了所提出的SRAM细胞的鲁棒性,与近期作品相比。
摘要 本文提出了一种用于航天应用的抗辐射极性设计 14T (RHPD-14T) SRAM 单元。通过估算 65 纳米互补金属氧化物半导体 (CMOS) 技术的各种设计指标,分析了所提出的 RHPD-14T 单元的性能。基于结合抗辐射极性设计技术与合理的布局拓扑,所提出的 RHPD-14T 可以耐受所有单节点翻转和部分双节点翻转。仿真结果表明,RHPD-14T 的写入访问时间比 RSP-14T/QUCCE-10T/DICE/S4P8N/We-Quatro(@VDD=1.2V) 短 1.83 倍 / 1.59 倍 / 1.56 倍 / 1.12 倍 / 1.05 倍。 RHPD-14T的字线写触发电压比QUCCE-10T/DICE/We-Quatro/S4P8N/RSP-14T (@VDD=1.2V)高2.67×/2.22×/1.35×/1.29×/1.26×;RHPD-14T的保持静态噪声容限比DICE/S4P8N/RHPD-12T (@VDD=1.2 V)高14.85×/7.15×/1.05×。此外,蒙特卡洛(MC)模拟证明RHPD-14T波动性小、稳定性强、恢复能力稳定、抗单效应翻转(SEU)能力强。关键词:保持静态噪声容限、极性设计抗辐射、单效应翻转分类:集成电路
1 马辛德拉大学电气与电子工程系,海得拉巴 500043,印度 2 巴巴古拉姆沙巴德沙大学电子与通信工程系,拉朱里 185234,印度 3 信息与通信技术 (ICT) 大学系,科技与技术 1902,孟加拉国 4 Univ. leå 理工大学电气与计算机工程系,SE 971 87 吕勒奥,瑞典 7 日本理化学研究所先进光子学中心中子束技术团队,RIKEN,Wako 351-0198,日本 * 通讯地址:soha.bhat@outlook.com (SMB); ali.bahar@usask.ca (ANB); akira.otsuki@uai.cl (AO)