NIST 材料科学与工程实验室主任 Leslie Smith 介绍了 NIST 的健康相关活动。他指出,在 2000 年销售的 3000 种 NIST SRM(标准参考材料)中,约有 10% 与健康有关。作为示例,他描述了 NIST 在胆固醇测量用 SRM 开发中的作用。列举了 NIST 在电磁场测量方法和标准、激光校准、医疗材料合作(与 FDA)、组织工程新材料和乳房 X 线摄影领域(每年 2600 万次手术,耗资 30 亿美元)方面的努力;NIST 为 17 种乳房 X 线摄影机提供了标准。2000 年 11 月 2 日至 3 日在 NIST 举行的有关欧盟体外设备指令的重要研讨会值得注意(Beckman Coulter、Dade Behring、Abbott Laboratories 和 Ortho Clinical 公司参加了该研讨会)。
采用该工艺已生产出多片复合板,每片包含5到10个间距,间距范围为0.5 μm到50 μm。对于每一问题,从板上剪下尺寸为9 mm x 9 mm的单个样品,并将其侧面安装在钢制支架上进行金相抛光。通常在抛光过程中,软材料的去除速度比硬材料快,但扫描隧道显微镜 (STM)、原子力显微镜 (AFM) 和触针轮廓仪的图像都显示,抛光后,SRM 的金线突出镍表面约 30 nm(图 3)。我们推测,热处理可能形成了硬质金镍合金,或者由于抛光中的化学机械效应,镍的去除速度比金的去除速度快。
FRL 于 1978 年开始向公众提供隔热材料 SRM 1450(玻璃纤维板)。随后几年,BFRL 更新了四个系列的 SRM 1450,此外还开发了其他四种隔热材料 SRM。这些经过认证的参考材料通常用于校准用于确定隔热材料热性能的设备,从而为美国和国际隔热材料制造商以及热测量用户群体提供重要的质量保证和计量可追溯性。目前,BFRL 正在开发第五系列的玻璃纤维板 SRM 1450d,以确保为客户提供充足的供应。目前,大多数 NIST 隔热材料 SRM 都是为 300K 或附近的温度应用开发的。BFRL 最近制造了一种新型防护热板装置,用于
通过该工艺已经生产出几种复合板,每种板包含 5 到 10 个间距,范围在 0.5 ixm 到 50 |xm 之间。对于每个问题,从板上剪下 9 mm x 9 mm 的单个样品,并将其侧面安装在钢制支架上进行金相抛光。通常在抛光过程中,软材料比硬材料去除得更快,但扫描隧道显微镜 (STM)、原子力显微镜 (AFM) 和触针轮廓仪的图像都显示,抛光后,SRM 的金线突出镍表面约 30 nm(图3)。我们推测,热处理可能形成了硬质金镍合金,或者由于抛光中的化学机械效应,镍的去除速度比金的去除速度更快。
2 低层防空反导(AMD)SEN ...................................................................... 0 0 0 0 3 M-SHORAD——采购 .............................................................................................. 0 69,091 0 69,091 4 MSE 导弹 ...................................................................................................... 230 963,060 230 963,060 5 工业防范陆军导弹 ............................................................................. 0 0 0 150,000 0 150,000 JPAC 供应商基础投资 ............................................................................. [0 ] [50,000 ] 弹药供应商基础计划 (MCEIP) [SRM、滚珠轴承、PCB 等] ...... [0 ] [100,000 ] 6 精确打击导弹 (PRSM) ............................................................................. 230 482,536 70 264,000 300 746,536 F25 PrSM Inc 产量增加 1 (+70) — 陆军 UFR ........................................ [70 ] [114,000 ] PrSM 产能扩大至 550 枚/年 ............................................................................. [0 ] [150,000 ] 7 精确打击导弹 (PRSM) ............................................................................. 0 10,030 0 10,030 8 间接火力防护能力 INC 2–I .................................................... 0 657,581 0 657,581 9 中程能力 (MRC) ............................................................................. 0 233,037 0 233,037 10 对抗小型无人机空中系统拦截 ................................................ 0 117,424 0 84,800 0 202,224 陆军 cUAS 拦截器——陆军 UFR ........................................................................ [0 ] [84,800 ] 空对地导弹系统 11 地狱火系统概要 ............................................................................................. 0 0 0 0 12 联合空对地 MSLS (JAGM) ............................................................................. 23 47,582 460 115,000 483 162,582 JAGM 产量增加 (+460) ............................................................................. [460 ] [115,000 ] 13 远程高超音速武器 ............................................................................................. 0 744,178 0 744,178反坦克/突击导弹系统 14 标枪(AAWS-M)系统概要 ...................................................................................... 930 326,120 930 326,120 15 拖2系统概要 ...................................................................................................... 557 121,448 557 121,448 16 制导多管火箭炮(GMLRS) ............................................................................. 0 1,168,264 0 1,168,264 17 制导多管火箭炮(GMLRS) ............................................................................. 0 51,511 0 51,511 18 多管火箭炮缩程练习火箭(RRPR) ............................................................. 2,508 30,230 2,508 30,230 19 高机动性火炮火箭系统(HIMARS ........................................... 10 79,387 10 79,387 20 陆军战术 MSL 系统(ATACMS)—系统总数 .................................................... 0 3,280 0 3,280 21 致命微型空中导弹系统(LMAMS) ...................................................... 0 0 0 0 22 低空无人机系统系列 .................................................................... 0 120,599 0 71,000 0 191,599 致命无人系统(LUS)/低空跟踪与打击条例(LASSO)—陆军 UFR ........................................................................................... [0 ] [10,000 ] SB600 产量增加 ............................................................................................. [0 ] [61,000 ]
太空运输系统Haer No.TX-116第337页V.固体火箭助推/可重复使用的固体火箭电机简介Twin Solid Rocket Booster(SRB)(SRBS),设计为STS的主要推进元件,在发射的前两分钟内为航天飞机提供了80%的升空推力。他们燃烧了超过2,200,000磅的推进剂,并产生了3600万马力。1487每个SRB助推器都由电动机和非运动段组成。电动机段(称为实心火箭电机(SRM)),后来更名为“可重复使用的固体火箭电机”(RSRM),其中包含燃料来为SRB供电。1488 SRMS/RSRMS是有史以来最大,唯一的固体螺旋桨火箭电机,也是第一个用于恢复和重复使用的设计。主要的非运动段包括鼻盖,frustum以及前进和后裙。这些结构成分包含电子设备,可在升空,上升和ET/SRB分离期间引导SRB,并放置了降落伞,这使可重复使用的助推器的下降减慢了从航天器的抛弃后进入大西洋。从历史上看,SRM/RSRM开发遵循与非运动SRB组件分开的路径。在整个SSP中,犹他州Promontory的Thiokol是SRM/RSRM的唯一制造商和主要承包商。超过400个供应商,位于37个州和加拿大,提供了金属组件,密封,隔热材料,面料,油漆和粘合剂。此外,六家公司还提供了构成RSRM推进剂的主要成分。1489 Thiokol向NASA提供了推进剂的前进电机盒细分,并安装了点火器/安全和手臂(S&A)设备;两个推进剂的中心运动案例段;加载的船尾电动机箱段,安装了喷嘴;表壳加强圈;以及安装了遣散系统的船尾出口锥体组件。其中包括犹他州锡达拉皮兹(Cedar Rapids)的美国太平洋(AMPAC)(高氯酸铵);德克萨斯州自由港的陶氏化学(环氧树脂);德克萨斯州罗克代尔的铝业(铝粉);伊利诺伊州内珀维尔的Toyal America(球形铝制粉末);位于肯塔基州路易斯维尔的美国合成橡胶公司(ASRC)(聚丁二烯 - 丙烯酸 - 丙烯酸丙烯腈Terpolymer [PBAN]);宾夕法尼亚州伊斯顿的元素色素(氧化铁)。对于最终的飞行电动机,三菱阿根廷铸币厂取代了Alcoa提供的铝粉,而高氯酸铵则由HCL-Olin在Becancour,Becancour,Quebec,Quebec,加拿大,加拿大和纽约州尼亚加拉瀑布提供。
专业经验 国际项目 2018 年 3 月 8 日 – 2022 年 3 月 7 日 EU-P2P 两用产品计划:“提供战略贸易管制相关活动专业知识的框架合同”,EU-P2P 出口管制计划,研究员。科学联盟:列日大学、伦敦国王学院、斯德哥尔摩国际和平研究所 (SIPRI)、海关与国际贸易法研究所 (AWA)、肯特大学 (UoK) 和 Angelo Minotti。 2017 年 5 月 31 日 – 2018 年 5 月 30 日 EU-P2P 两用产品计划:“EUP2P 两用产品出口管制计划范围内的短期专家”。Expertise France,咨询服务。 2017 年 1 月 12 日 EU-H2020 居里夫人,SMETCUB(用于 CUBesat 推进系统的旋流微燃烧室和电催化技术)。评估 84.8/100;阈值 70/100;资金 85/100。2012 年 3 月 1 日 – 2016 年 7 月 31 日欧盟第七框架计划 - HRC 研究项目:“用于连续和灵活发电的混合可再生能源转换器”,研究员。罗马大学,航空航天和机械工程系,宇航、电气和能源学系。2010 年 10 月 1 日 – 2012 年 11 月 30 日欧盟第七框架计划 - ISP-1 研究项目:“空间推进-1:CH4/氧气燃烧研究”,研究员。罗马大学,航空航天和机械工程系 2007 年 6 月 1 日 - 2007 年 11 月 1 日欧盟第六框架计划 - LAPCAT 研究项目:“冲击边界层相互作用的大涡模拟”,研究员。罗马大学,航空航天和机械工程系 2005 年 1 月 1 日 – 2006 年 12 月 31 日 ESAFLPP(未来发射器准备计划)研究项目:“未来可重复使用发射器的 LO2/CH4 火箭发动机的亚临界和超临界燃烧建模”,研究员。罗马大学,航空航天和机械工程系 – AVIO SpA 2004 年 1 月 1 日 – 2004 年 12 月 31 日 北约“低可观测性”研究项目:“使用 NATO Nplume、Modtran 和 Niratam 软件对涡轮喷气发动机羽流进行红外(3.5-5μm 和 8-12μm)分析和可见性”,研究员。罗马大学,航空航天和机械工程系 - Avio SpA 2003 年 5 月 1 日 - 2003 年 12 月 31 日 ESA“Vega”研究项目:“羽流辐射分析:VEGA 运载火箭的 SRM 和 AVUM ME”,研究员。