SS316L的定向能量沉积添加剂制造(DED-AM)使用原位和Operando Synchrotron X射线成像进行了研究,以定量地了解加工参数对融化池形态和表面质量的影响。发现,DED-AM构建的表面粗糙度可能是由于熔体流量的变化和构建阶段运动扰动引起的熔体池表面扰动所致。的过程图,该过程图将构建质量与处理参数(包括粉末进料速率,激光功率和遍历速度)相关联。AM过程参数如何控制构建效率,并确定导致粗糙度的表面扰动所需的处理条件。2020作者。由Elsevier B.V.这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)。
激光粉床融合工艺越来越多地用于通过熔化并在快速移动的精细焦点激光束下熔化金属零件。需要快速估计所得温度场,融合区尺寸和冷却速率,以确保用最小缺陷的偏置精确零件制造。在这里提出了一个新型的三维分析传热模型,该模型可以在这里迅速可靠地以零件尺度模拟激光粉末床融合过程。体积热源项的构建是为了分析模拟熔体池的演化,其深度与宽度比相当。所提出的分析模型可以模拟零件尺度上的多个轨道和图层的构建速度明显要比文献中报道的所有数值模型要快得多。发现融合区形状和尺寸和冷却速率的计算结果与实验报告的结果非常吻合,该结果是在三种具有多种多样特性的常用合金的构建中,SS316L,TI6AL4V和ALSI10MG。基于分析计算的结果,提供了一组易于使用的过程映射,以估算多个过程条件,以获得一组目标融合区域二月,而无需试用和错误测试。
在基于粉末床的添加剂制造(AM)中粉末扩散的不确定性在制造零件的质量和重复性方面提出了挑战。这些挑战由于粉末床颗粒之间存在的空隙而导致高孔隙率。这项工作着重于使用SS316L作为模型材料在粉末流动性上引起的粒径分布(PSD)引起的不确定性。分析了各种尺寸的颗粒,范围为10 µm至100 µm,以及双峰比为70:30的球形和卫星形颗粒。将使用USP 616确定每个样品的挖掘密度,表观密度和Hausner比率。较小的粒径已显示可降低体积密度和表观密度。同时,颗粒的形状也有助于粉末颗粒之间的包装能力。卫星粉已被证明可以增加粉末的直径,从而增强了粉末颗粒的散装密度。已显示双峰颗粒同时增加体积和挖掘的密度,而较小的粉末无法填充较大颗粒之间存在的空隙。但是,随着粉末颗粒之间的尺寸比的增加,大量密度降低,表明较小的粉末能够填补颗粒之间的间隙。在用Hausner比值来比较粉末颗粒时,双峰颗粒已显示出最差的流动性,值为1.19856。这是由于以下事实:较大颗粒之间的较小颗粒会增加粉末之间的摩擦。因此,本研究说明了粒度和形状如何影响粉末堆积密度,这对于优化材料设计和加工技术至关重要
