随着高速铝制船舶的速度和排水量不断增加,疲劳相关的开裂问题也随之增加。目前,大多数船东将此视为维护问题,并简单地修复开裂的结构。本报告试图将此问题的重点从维护转移到设计。它将允许船东在船舶设计期间解决疲劳相关的开裂问题,并避免因继续重新焊接疲劳开裂结构而产生的昂贵维修费用。本报告讨论了作用于高速船的载荷,并确定了开发一套完整一致的海洋环境中铝疲劳计算所需的最新技术以及数据中的“漏洞”。本报告还讨论了开裂铝结构的损伤容限,并提供了有助于设计师和工程师确定特定裂纹可能需要修复的紧迫性的信息。报告还确定并提供了其他铝工业和设计规范的疲劳设计实践信息。这为海洋工业和铝高速船开发更多数据提供了有益的见解。报告最后根据当前工作开发过程中发现的漏洞提出了继续研究和开发的建议。
有限许可:本材料可在未经 ANSI 许可的情况下复制,但仅限于非商业和非促销目的,并且文本不得以任何方式更改或删除,且 ANSI 版权已明确注明如上所述。未经出版商事先书面许可,不得以任何形式或任何方式复制或分发本出版物的任何部分,或将其存储在数据库或检索系统中,除非获得有限许可或美国版权法第 107 或 108 条的许可。
航空航天工业修补金属样品的测试通常涉及薄铝板,高模量单向纤维垂直于裂纹应用。大多数复合材料修补测试是在薄板或厚度小于 0.25 英寸的板上进行的。虽然 0.25 英寸的板材在航空航天标准中被认为是厚的,但对于海洋结构来说,0.25 英寸的板材被认为是薄的。本报告中记录的测试将典型测试样品的规模扩大了样品的厚度和尺寸。测试样品是 11 英寸宽、0.25 英寸厚的铝板,初始裂纹为 5 英寸。将修补和未修补样品的测试数据与使用 Global Engineering and Materials, Inc. (GEM) 开发的 ABAQUS 混合结构评估和疲劳损伤评估 (HYSEFDA) 工具包进行的裂纹扩展预测进行了比较 (Fang、Stuebner 和 Lua,2013)。
为什么论文很重要?在发布时,数字CMOS电路的开关速度和硅面积是用于电路优化的主要设计。本文对设计技术提出了显着意识,这些技术也允许执行给定计算所需的功率和能量的最小化。确定,为了最大程度地减少功率耗散,需要在从系统级别开始,从架构和电路开始到基础制造技术的各个级别的设计过程攻击问题。能量优化的设计现已成为CMOS设计中的主要考虑之一,并且电池操作的设备的重要性不断增加,并且在高性能系统中的降温局限性。
2.1 弹性:变形力、恢复力、弹性体和塑性体、应力和应变及其类型、胡克定律、应力应变图、杨氏模量、体积模量、刚性模量及其之间的关系(无推导)(简单问题)。 (简单问题)高温钢、铸铁、铝和混凝土的应力应变图、极限应力和断裂应力、安全系数。 2.2 表面张力:力——内聚力和粘附力、接触角、毛细管中液面的形状、毛细作用举例、表面张力之间的关系、毛细管上升和毛细管半径(无推导)(简单问题)、杂质和温度对表面张力的影响。 2.3 粘度:速度梯度、牛顿粘度定律、粘度系数、流线和湍流、临界速度、雷诺数(简单问题)、斯托克斯定律和终端速度(无推导)、浮力(向上推力)、温度和掺杂对液体粘度的影响。
2.1 弹性:变形力、恢复力、弹性体和塑性体、应力和应变及其类型、胡克定律、应力应变图、杨氏模量、体积模量、刚性模量及其之间的关系(无推导)(简单问题)。(简单问题)H.T. 的应力应变图。钢、铸铁、铝和混凝土、极限应力和断裂应力、安全系数。2.2 表面张力:力——内聚力和粘附力、接触角、毛细管中液体表面的形状、毛细作用及其示例、表面张力之间的关系、毛细上升和毛细半径(无推导)(简单问题)、杂质和温度对表面张力的影响。2.3 粘度:速度梯度、牛顿粘度定律、粘度系数、流线和湍流、临界速度、雷诺数(简单问题)、斯托克斯定律和终端速度(无推导)、浮力(向上推力)、温度和掺杂对液体粘度的影响。
RE:Carderock 联系人。建筑计划之间存在差异,制造商有非常具体的详细技术,例如超声波 NDE 技术,而现场检查则相对随意。在与 Gene Campneschi 交谈时,试图找出是否存在可允许的缺陷尺寸,他说这是非常结构特定的;基本上,当我们处于有限元分析级别时,标准做法是进行缺陷关键性分析研究,从而将不同的缺陷引入模型以确定最大允许尺寸。我尝试在我的表格中指定可允许的缺陷。RE:Bruce Bandos 是一位 3 级超声波 NDE 从业者,我有在费城合作的经验。Bruce 告诉我,Northrop Grummon 公司内部进行所有 NDE,在他看来,该公司拥有国内最先进的海洋复合材料 NDE 设备。我已经给他们的 NDE 联系人发了电子邮件,但不太可能收到回复。我计划拜访 Bruce Bandos,因为他有超声波、热成像和激光剪切干涉仪设备。剪切干涉仪由材料科学公司 (MSC) 开发,我也打算拜访这家公司。回复:计划测试。第一个测试是目测的。咨询了测量员和从业人员后,最实际使用的方法是目测,在演示中将进一步讨论目测的重要性。回复:设备制造商 我了解需要联系的制造商,但我认为进行一些初步工作以确定设备需要检测的缺陷大小很重要。
图 2:(a) 距板边缘的距离 (mm) vs 板应力 (MPa);(b) 距翼缘的距离 (mm) vs 翼缘应力 (MPa);(c) 距板与腹板连接处的距离 (mm) vs 腹板应力 (MPa)。(Hu and Jiang 1998)
简介 通过分析现场水样可以确定水体内的悬浮固体浓度 (SSC)。尽管这种方法可以得到准确的测量结果,但是结果是基于点的,并且仅在有限数量的采样位置可用。如果必须将测量结果在较大的区域进行空间外推,则可能会引入相当大的误差 (Nanu 和 Robertson,1990)。通过增加采样密度可以提高估算的 sscs 的准确性,这使该方法过于耗时且成本高昂。但是,如果与遥感数据相结合,这种现场采样方法对于量化 ssc 和研究其在水体内的空间分布模式非常有用。能否准确地从遥感数据量化 SSc 取决于数据中记录的 ssc 与其反射率之间的相关性。如果 ssc 小于 100 mgl-I,则在可见光和近红外波长范围内,这两个变量之间存在正相关性(Forster 等,1994;Lyon 等,1988;Mertes 等,1993;Ritchie 和 Cooper,1988;Tassan,1993)。如果 ssc 较低且范围较小(20 至 50 mgl-I),则这两个变量之间的关系为非线性(例如对数)(Xia,1993)。遥感数据中 ssc 与其数字值 (DN) 之间已建立的关系受多种因素的影响,例如波长、视角和
4.1 Tkinter 控件导览 31 Toplevel 32, Frame 33, Label 35, Button 36, Entry 37, Radiobutton 37, Checkbutton 38, Menu 39, Message 42, Text 43, Canvas 44, Scrollbar 45, Listbox 45, Scale 46 4.2 字体和颜色 47 字体描述符 47, X Window System 字体描述符 47, Colors 48, 设置应用程序范围的默认字体和颜色 49 4.3 Pmw Megawidget 导览 49 AboutDialog 50, Balloon 50, ButtonBox 51, ComboBox 52, ComboBoxDialog 53, Counter 54, CounterDialog 55, Dialog 56, EntryField 56, Group 57, LabeledWidget 58, MenuBar 59, MessageBar 59, MessageDialog 61, NoteBookR 61, NoteBookS 62, NoteBook 63, OptionMenu 64, PanedWidget 65, PromptDialog 66, RadioSelect 66, ScrolledCanvas 67, ScrolledField 68, ScrolledFrame 69, ScrolledListbox 70, ScrolledText 70, SelectionDialog 71, TextDialog 72, TimeCounter 73 4.4 创建新的 megawidget 73 megawidget 的描述 73, 选项 74, 创建 megawidget 类 74