串联重复是基因组的频繁结构变化,并且在遗传疾病和CER中起重要作用。然而,解释串联重复的表型后果仍然具有挑战性,部分原因是缺乏建模这种变化的遗传工具。在这里,我们通过Prime Editing(TD-PE)制定了一种策略重复,以在哺乳动物基因组中创建有针对性,可编程和精确的串联重复。在此策略中,我们针对每个有针对性的串联复制设计了一对trans Prime编辑指南RNA(PEGRNA),该重复编码相同的编辑,但在相反的方向上介绍了单链DNA(SSDNA)扩展。每个扩展的逆转录酶(RT)模板设计与其他单个指南RNA(SGRNA)的目标区域同源,以促进编辑的DNA链的重新进行重复,并在中间的片段重复。我们表明,TD-PE产生了从约50 bp到约10 kb的基因组片段的鲁棒和精确的原位串联重复,最大效率高达28.33%。通过微调pegrnas,我们同时实现了目标重复和碎片插入。最后,我们成功地产生了多种疾病的串联重复,显示了TD-PE在遗传研究中的一般效用。
设备制造和操作。纸基精子 DNA 分析设备在 PowerPoint 中设计,并使用固体蜡打印机(ColorQube 8570N,加拿大施乐)打印在硝化纤维素纸上(平均孔径为 0.45 μm,加拿大 Bio-Rad Laboratories Ltd.)。然后将图案化的硝化纤维素纸在 125 ºC 下加热 5 分钟,让蜡扩散穿过纸张厚度并从疏水边界扩散。为了将 ICP 功能添加到纸张中,在样品通道的开始处用移液器吸取 0.5 L 阳离子选择性纳米多孔 Nafion(20% 重量,低级脂肪醇和水,Sigma-Aldrich,美国),然后在去离子水中对膜进行水合 30 分钟。设备在室温下风干并在使用后存放在培养皿中。要使用该设备,需要将 3 μL 样品移液到样品通道中,然后用去离子水使设备饱和。通过在样品通道上施加 150 V/cm 的电压 15 分钟来诱导 ICP。在此步骤之后,使用直立荧光显微镜(Axiophot,德国卡尔蔡司公司)捕获绿色(dsDNA)和红色(ssDNA)荧光图像。捕获的图像在 ImageJ 中处理,并使用 Matlab 中的书面脚本进行数据量化。
1) Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, JA 和 Charpentier, E. (2012): 适应性细菌免疫中的可编程双 RNA 引导 DNA 内切酶。Science, 337, 816- 821。2) Kim, S., Kim, D., Cho, SW, Kim, J. 和 Kim, JS (2014): 通过递送纯化的 Cas9 核糖核蛋白在人类细胞中进行高效 RNA 引导基因组编辑。 Genome Res.,24,1012 — 1019。3) Quadros, RM、Miura, H.、Harms, DW、Akatsuka, H.、Sato, T.、Aida, T.、Redder, R.、Richardson, GP、Inagaki, Y.、Sakai, D.、Buckley, SM、Seshacharyulu, P.、Batra, SK、Behlke, MA、Zeiner, SA、Jacobi, AM、lzu, Y.、Thoreson, WB、Urness, LD、Mansour, SL、Ohtsuka, M. 和 Gurumurthy, CB (2017):Easi-CRISPR:一种使用长 ssDNA 供体和 CRISPR 核糖核蛋白一步生成携带条件和插入等位基因的小鼠的稳健方法。 Genome Biol., 18, 1 — 15。4) Chen, S.、Lee, B.、Lee, AYF、Modzelewski, AJ 和 He, L. (2016): 高效小鼠基因组编辑
在减数分裂期间,链交换蛋白RAD51和DMC1的核蛋白蛋白质对通过同源重组(HR)修复SPO11生成的DNA双链断裂(DSB)至关重要。正和负RAD51/DMC1调节剂的平衡活性可确保正确重组。类似烦躁的类似1(fignl1)先前显示出对人类细胞中RAD51的负调节。然而,fignl1在MAM-MALS中减数分裂重组中的作用仍然未知。在这里,我们使用男性种系条件敲除(CKO)小鼠模型解读了Fignl1和Fignl1相互作用调节剂(FIRRM)的减数分裂功能。在小鼠精子细胞中完成减数分裂预言所必需。尽管在减数分裂DSB热点对DMC1上有效募集,但晚期重组中间体的形成在FIRRM CKO和Fignl1 CKO精子细胞中仍然有缺陷。此外,Fignl1-FiRRM复合物将RAD51和DMC1的积累限制在完整的染色质上,这是由于SPO11催化的DSB的形成而独立于形成。纯化的人fignl1δn改变了rad51/dmc1核蛋白素的结构,并在体外inshi-bits链链入侵。因此,这种复合物可能在减数分裂DSB的位点调节RAD51和DMC1关联,以促进重组中间体的促进链和处理。
成簇的规律间隔的短回文重复序列 (CRISPR)/相关核酸酶 (Cas) 的优异特异性和选择性是由 CRISPR RNA (crRNA) 的可互换间隔序列以及靶序列和 crRNA 序列之间的错配位置和数量决定的。某些疾病的特征是表观遗传改变而不是核苷酸变化,因此不适合 CRISPR 辅助传感方法。在这里,我们展示了一种体外诊断工具,通过使用甲基化敏感的限制性酶 (MSRE) 然后进行 Cas12a 辅助传感来区分 DNA 中的单个 CpG 位点甲基化。非甲基化序列被 MSRE 消化,导致靶序列碎片化,从而影响 crRNA 和靶 DNA 之间的 R 环形成。我们表明,片段大小、片段位置和片段数量会影响随后对单链 DNA (ssDNA) 的附带反式切割活性,从而可以从切割活性中推断出甲基化位置。利用 MSRE 与 Cas12a 结合,可以确定癌症基因的单个 CpG 位点甲基化水平。Cas12a 和 MSRE 的模块化为 Cas12a - MSRE 组合传感方法提供了高度的多功能性,这为轻松快速地研究单个 CpG 甲基化位点以进行疾病检测提供了可能性。
1) Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, JA 和 Charpentier, E. (2012): 适应性细菌免疫中的可编程双 RNA 引导 DNA 内切酶。Science, 337, 816– 821。2) Kim, S., Kim, D., Cho, SW, Kim, J. 和 Kim, JS (2014): 通过递送纯化的 Cas9 核糖核蛋白在人类细胞中进行高效 RNA 引导基因组编辑。Genome Res., 24, 1012–1019。 3) Quadros, RM、Miura, H.、Harms, DW、Akatsuka, H.、Sato, T.、Aida, T.、Redder, R.、Richardson, GP、Inagaki, Y.、Sakai, D.、Buckley, SM、Seshacharyulu, P.、Batra, SK、Behlke, MA、Zeiner, SA、Jacobi, AM、Izu, Y.、Thoreson, WB、Urness, LD、Mansour, SL、Ohtsuka, M. 和 Gurumurthy, CB (2017): Easi-CRISPR:一种使用长 ssDNA 供体和 CRISPR 核糖核蛋白一步生成携带条件和插入等位基因小鼠的稳健方法。Genome Biol.,18,1-15。 4) Chen, S.、Lee, B.、Lee, AYF、Modzelewski, AJ 和 He, L. (2016): 高效小鼠基因组编辑
双子座科的家族由500多个可以感染众多双核和单子植物的圆形单链(SS)DNA病毒物种组成。双子病毒利用宿主的DNA复制机制,在植物细胞的核中复制其基因组。将其DNA转化为双链DNA,随后复制,这些病毒依赖于宿主DNA聚合酶。但是,此过程的第一步的启动,即传入的圆形ssDNA转化为dsDNA分子,已经难以捉摸近30年。In this study, sequencing of melon ( Cucumis melo ) accession K18 carrying the Tomato leaf curl New Delhi virus (ToLCNDV) recessive resistance quantitative trait locus (QTL) in chromosome 11, and analyses of DNA sequence data from 100 melon genomes, showed a conservation of a shared mutation in the DNA Primase Large subunit ( PRiL ) of all accessions that对TolCNDV的挑战表现出抵抗力。沉默(天然)烟熏本尼亚人pril以及随后对三种不同的双子病毒的挑战表明,所有三种病毒的滴度都严重减少,完全强调了pril在双子病毒复制中的重要作用。呈现了一个模型,以解释Pril在GESINIVIRAL DNA复制启动中的作用,即 作为原始酶的调节亚基,在DNA复制开始时类似于DNA Primase - 在所有生物体中介导的DNA复制起始。呈现了一个模型,以解释Pril在GESINIVIRAL DNA复制启动中的作用,即作为原始酶的调节亚基,在DNA复制开始时类似于DNA Primase - 在所有生物体中介导的DNA复制起始。
基因治疗是一个快速发展的医学领域,目前有数百项早期临床试验和大量临床前研究正在进行中。基因组编辑 (GE) 现在是实现基因校正稳定治疗效果的一项越来越重要的技术,造血细胞是开发多种遗传性疾病、感染和癌症新疗法的关键目标细胞群。通过在基因组 DNA 的特定位置引入双链断裂 (DSB),GE 工具可以敲除所需基因,或者在提供适当的修复模板的情况下敲入治疗基因。目前,GE 介导的敲入方法的效率有限。人们付出了大量的努力来改进 GE 核酸酶蛋白的参数和相互作用。然而,新出现的数据表明,修复模板的最佳特性可能在敲入机制中发挥重要作用。虽然病毒载体(以 AAV 为例)作为供体模板载体在许多临床前试验中仍然是主流,但非病毒模板(包括质粒和线性 dsDNA、长 ssDNA 模板、单链和双链 ODN)是一种有前途的替代方案。此外,调整所选模板的编辑条件以及其结构、长度、序列优化、同源臂 (HA) 修饰对于实现具有良好安全性的高效基因敲入可能至关重要。本综述概述了 GE 介导的治疗性基因校正模板优化的最新进展。
图1。使用ssDNA或PCR产物作为HDR模板(a)上部的蛋白质标记的策略示例:据报道编码Centriolar远端附属物蛋白SCLT1的C-末端的基因组序列。带下划线的序列代表CrRNA识别位点,PAM序列为黄色,垂直虚线表示切割位点。鉴于距离内源性终止密码子(BOLD大写字母的TAA)距离为14 bp,插入位点被任意定位为距剪切位点1 bp的位置,即在SCLT1的密码子之间的最接近的交界处。在下部,密码子(上图)和相应的氨基酸性残基(下图)构成了插入物:蓝色大写字母是指可易加的链接器,然后是v5-tag(红色)和附加的外源终止密码子(黑色)。50 bp lha或rha = 50碱基对左同源臂或右同源臂。(b)使用PCR产物作为供体DNA生成具有荧光蛋白(FP)的蛋白质(您最喜欢的蛋白质,YFP)的C端标记的示意图。PCR模板由带有FP,2A元件和电阻盒(R)的标准质粒(左侧)组成。使用一对60mer引物进行PCR反应。在右侧代表了目标基因座(您最喜欢的基因,YFG)的编辑。
有趣的是,在用荧光团末端标记锚定寡核苷酸并使用表面诱导荧光猝灭来监测 DNA 链运动的实验中,系统地观察到了预期 ms 范围内的链动力学。27,28 荧光猝灭和电化学实验都要求 DNA 链的末端标记在(亚)纳米距离内接近锚定表面,尽管在荧光中没有发生电子转移。这表明通过电化学测得的慢速率常数反映了电子转移步骤而不是链动力学的动力学控制。本研究旨在通过以下方式解决这个问题:(i)组装模型端接氧化还原寡核苷酸系统,(ii)用快速扫描速率循环伏安法表征其电化学响应,和(iii)基于真实的 DNA 分子动力学模型解释结果。这些模拟以前在计算上是无法实现的或定量不够的,但随着粗粒度序列依赖性 DNA 模型(如 oxDNA)的细化,这些模拟成为可能。29 对于目前的工作,我们开发了专用于电化学应用的代码(Qbiol),能够及时以数字方式重现和解析锚定 DNA 的完整动力学。我们的证据表明,单链和双链氧化还原寡核苷酸的电化学响应实际上都是由电极上的电子转移动力学控制的,符合马库斯理论 30-32 但是由于氧化还原标签附着在柔性 DNA 链和电极上,重组能大大降低。重组能的降低极大地改变了氧化还原 DNA 链的电化学响应,这种改变可能被误认为是扩散或弹性弯曲控制。此外,ssDNA 和 dsDNA 的重组能明显不同,这在很大程度上导致了