并行会议 15:30 – 17:30 OT 1-1-4 桅杆、FPSO 和多柱浮子 I OT 1-4-2 浮子和系泊模拟 SSR 2-7-1 系泊和立管系统的可靠性 SSR 2-12-3 结构分析和优化 III MAT 3-1-1 断裂评估 - 分析方法 PRS 4-1-7 脐带缆和电缆 I PRS 4-3-5 热机械 OE 6-4-1 拖曳和海底电缆和管道、系泊和浮标技术 OE 6-15-2 会议 II-III:机器人车辆和水下通信系统的嵌入式架构。传感器、处理算法、分布式平台和软件架构 CFD 8-8-2 优化、大数据和机器学习 ORE 9-1-4 浮动风力涡轮机:数值建模 II ORE 9-3-2 振荡水柱 PT 11-6-2 钻井液和液压 II PT 11-11-1 石油和天然气作业中的人为因素 HCGS 12-1-3 波谱和概率模型及工程应用 I HCGS 12-8-1 海上安全和人为因素 I HBM 13-1-2 波体相互作用 II
– 仪表着陆系统 (ILS), – 甚高频全向无线电信标 (VOR), – 测距设备 (DME), – 紧急定位发射机 (ELT), – 防撞系统 (ACAS), – 二次监视雷达 (SSR), – 交通防撞系统 (TCAS), – 雷达高度计、无线电测定站(包括雷达和信标), – 微波着陆系统 (MLS), – 机载气象雷达 (AWR) 和机载多普勒雷达。
波动模型 旋转 I 速度 PAR:+ – 40 至 + – 250 节 ASR:+ – 40 至 + – 400 节 仪器覆盖量 PAR 覆盖方位角 30 度;仰角 -1 至 +7 度 高度最小高于地面 100 英尺拦截点范围晴朗模式下 20 海里;降雨模式下 15 海里更新率每秒 1 次 ASR 覆盖方位角 360˚;仰角 0˚ 至 20˚;高度 0 至 8,000 英尺范围晴朗模式下 30 海里;雨天模式下 19 海里 更新率 每 5 秒一次(天线旋转 60 rpm) SSR 覆盖范围 360˚ 范围 60-250 海里,取决于所选询问器 更新率 每 4.8 秒一次(天线旋转 12.5 rpm) 飞机目标处理 PAR 目标 方位角 50 个绘图/扫描;仰角 22 个绘图/扫描 ASR 和 SSR 目标 250 个绘图/扫描 可靠性 MTBCF 2212 小时 可维护性 MTTR 0.25 小时 定期维护每季度一次,2 小时。 天气处理整个雷达覆盖区域,3 个级别
摘要:评估种质的遗传多样性对于声音种质管理及其在育种计划中的成功利用至关重要。这项研究旨在估计车前草配件之间的遗传多样性,并使用简单序列重复(SSR)标记在基因型之间建立关系。SSR标记物在20个车前草附属物中扩增了21个等位基因,每个位点3.50等位基因和主要等位基因频率(平均值±SD,0.80±0.34)。多态信息内容(PIC)和香农的多样性指数分别为0.054至0.919和0.000至1.864。分子方差分析(AMOVA)表明,种群中基因型之间发生了88%的遗传变异,人群之间观察到最小的变异。这会导致区分种群时的NEI遗传距离和FST值可以忽略不计。基因流速明确证明了采用共同主导标记的功效,正如主坐标分析(PCOA)和树状图所证明的那样。这项研究表明,在车前草种群中的20个车前草配件之间存在明显的遗传差异,并建立了新的集群群体,为未来在育种计划中使用提供了宝贵的见解。
简介:创伤后应激障碍(PTSD)是一种复杂的疾病,在创伤事件后发展,严重影响了个体的生活质量。这种情况与各种症状有关,例如复兴,躲避,认知和情绪的变化以及过度兴奋。治疗管理具有挑战性,涉及心理治疗和药理方法。但是,许多患者对可用治疗的反应不佳,尤其是对常见药物,例如选择性5-羟色胺再摄取抑制剂(SSR)。目的:本研究旨在全面回顾PTSD治疗中的当前和新兴药理策略,探索除SSR以外的选择,以改善临床结果和定制疗法。方法论:使用与PTSD药理管理相关的特定描述符,对PubMed,Medlineplus,Scielo,Lilacs和Google学术数据库进行了探索和定性文献的综述。审查期包括1980年至2023年的出版物,重点介绍了讨论药理学管理的文章。在应用严格的包含和排除标准后,选择了25项研究。结果和讨论:研究强调了PTSD的病因复杂性,包括神经生物学和社会心理因素。合并症,例如抑郁症和焦虑症,使PTSD的管理变得复杂。诊断基于DSM-5标准,CAPS-5是主要评估工具。在治疗方面,除了SSR之外,还研究了Venlafaxine,Prazosin,Quetiapine,氯胺酮和大麻二酚等药物,还显示了治疗特定PTSD症状的潜力。对治疗的反应各不相同,表明需要将药物治疗和心理疗法结合起来的自定义方法。最终考虑:有效的HPE管理需要一种多学科和个性化的方法,以考虑每种情况的特殊性。研究对于开发更有效和侵入性较低的治疗仍然至关重要。卫生专业人员对基于证据的实践的承诺对于改善受这种病理影响的个体的生活质量至关重要。关键字:创伤后应激障碍;药理管理;治疗
我们感谢斯坦福大学医院为数据访问提供便利。作者感谢阿尔弗雷德·P·斯隆基金会 (2022-17182)、JPAL 医疗保健交付计划和麻省理工学院 SHASS 的支持。该实验已在 AEA 注册中心预注册,编号为 AEARCTR-0009620。预分析计划可在 SSR 注册 9620 和 SSR 注册 8799 处获得。该项目受益于与多位放射科医生的合作,包括斯坦福大学的 Matthew Lungren、Curtis Langlotz 和 Anuj Pareek 博士、西奈山医院的 Etan Dayan 和 Adam Jacobi 博士、VinBrain 的 Steven Truong 和 VINMEC 的几位放射科医生,以及 USARAD、Vesta Teleradiology 和 Advanced Telemed 的远程放射科医生。我们感谢 Daron Acemoglu、David Autor、David Chan、Glenn Ellison、Amy Finkelstein、Chiara Farronato、Drew Fudenberg、Paul Joskow、Bentley MacLeod、Whitney Newey、Pietro Ortoleva、Paul Oyer、Ariel Pakes、Alex Rees-Jones、Frank Schilbach、Chad Syverson 和 Alex Wolitzky 提供的有益对话、评论和建议。Oishi Banerjee、Ray Huang、Andrew Komo、Manasi Kutwal、Angelo Marino 和 Jett Pettus 提供了宝贵的研究协助。本文表达的观点为作者的观点,并不一定反映美国国家经济研究局的观点。
PCR based genetic markers : RAPD (Random Amplified Polymorphic DNA), AFLP (Amplified Fragment Length Polymorphism), SSR (Simple Sequence Repeat), STR (Single Tendem Repeats), VNTR (Variable Number Tendem Repeat), STS (Sequence Tag Size), SNP (Single Nucleotide Polymorphism), EST (Expressed Sequence Tagged) Hybridization based遗传标记:RFLP(限制片段长度多态性)分子标记也可以分类为 -
3 功能要求 ................................................................................................ 15 3.1 基本功能 ................................................................................................ 15 3.2 PAR 功能 ................................................................................................ 15 3.3 PSR 功能 ................................................................................................ 19 3.4 SSR 功能 ................................................................................................ 19 3.5 模拟器功能 ............................................................................................. 20 3.6 与 MIL i-ATC 的接口 ............................................................................. 22 3.7 数据通信 ............................................................................................. 23 3.8 系统操作员角色 ............................................................................................. 25 3.9 系统状态 ............................................................................................. 27 3.10 功能监控 (FM) 和内置测试 (BIT) ............................................................. 28 3.11 子组件 ............................................................................................. 29 3.12 信息安全 ............................................................................................. 29
俄罗斯小麦蚜虫(RWA; Diuraphis noxia [kurdjumov])是世界上最重要的和侵入性的小麦,大麦和其他谷物的害虫之一,并且对全球秋季小麦有至关重要的经济影响。抗性品种的发展可能会导致有力控制RWA控制的新RWA生物型的连续出现,从而强调了确定新的抗性来源的需求。用全身性杀虫剂控制RWA在经济上昂贵,对环境和人类健康危害。因此,控制RWA的最有效方法是确定和开发具有耐药基因的小麦品种。提出的研究试图确定25种小麦品种的DN基因,其中包括乌兹别克斯坦小麦育种计划的19种品种和俄罗斯育种的6种品种。PCR筛选进行了六个(XGWM44,XGWM111,XGWM635,XGWM337,XGWM337,XGWM642和XGWM473)SSR标记与DN基因相关的SSR标记,以识别小麦植物中的遗传多态性。结果帮助研究人员参与了育种计划,遗传改善和有害生物管理,这有助于小麦养殖的经济可行性。反过来,它通过提高小麦产量并最大程度地减少损失来增强粮食安全并促进区域和国家一级的财务稳定。