Battery Consult AG 是盐电池领域的全球卓越中心,专门研究盐电池技术。我们的重点是优化 NaNiCl 2 电池和电池设计,以开发可持续且经济高效的工业应用和固定电网存储市场解决方案。自 2008 年成立以来,我们一直是国内外研究项目中值得信赖的合作伙伴,成功进行了多项技术转让。我们的储能电池 STC-140 和 STC-250 已申请专利。
日本东京,2023 年 8 月 31 日——三井不动产住宅株式会社和藤泽 SST 委员会(牵头组织者:松下集团)在神奈川县藤泽市藤泽可持续智能城(藤泽 SST)内新设立了未来共创 FINECOURT Ⅲ,这是经过认证的生命周期碳减排 (LCCM) 住宅*2,其理念是“只要住在里面就能产生能量的房屋”。视察之旅将于 2023 年 9 月 1 日星期五开始。该样板房的开发旨在解决可持续发展目标,并提出由于新冠疫情后在家办公人数增加而产生的新生活方式,以及解决进一步促进碳中和等社会问题。该住宅安装了基于建筑环境可持续发展目标清单的技术和设备,并提出了一种实现身心健康的生活方式*3。此外,该住宅还将通过利用钙钛矿太阳能电池和其他可再生能源发电,并采用车到家 (V2H) 电力存储和空调系统,为实现脱碳社会做出贡献。三井不动产住宅有限公司和藤泽 SST 委员会将继续创造和发展新的服务和解决方案,并致力于创建一个在未来 100 年不断发展的智能城镇。
空间监视与跟踪 (SST) 是欧盟 STM 的运营支柱,对于保护太空基础设施、设施和服务至关重要。得益于欧盟 SST 联盟内成员国提供的 SST 能力,欧盟已经具备了 SST 能力。已有 268 颗欧洲卫星受到碰撞风险保护。来自 23 个欧盟成员国的 135 多个公共和私人组织正在受益于欧盟 SST 能力。
摘要:通过比较完全耦合的大气 - 海洋 - 冰模型与同一大气模型与海洋替换为无动感的平板层(因此Fornless Slab Slab Ocean模型),研究了交互式海洋动力学对大西洋海面温度(SST)内部变化的影响。两种模型之间的SST变异性差异是通过优化技术诊断出的,该优化技术发现了差异尽可能不同的组件。这项技术表明,大西洋SST的可变性在两个模型之间显着不同。平板海洋模型中具有最大SST方差的两个组件类似于与北大西洋振荡(NAO)和大西洋多年代变化(AMV)模式相关的Tripole SST模式。该结果支持以前的主张,即AMV不需要海洋动力学,尽管海洋动力学导致AMV和NAO Tripole的记忆略有增加。完全耦合模型中SST方差最极端增强的组件类似于大西洋尼诺尼诺模式,并确定了我们技术隔离已知需要海洋动力学的物理模式的能力。在完全耦合模型中具有更大差异的第二个组件是一种亚置SST变异性的模式。SST异常的重新出现和海洋热传输的变化都会导致SST差异和记忆力增加。尽管SST的平均值和变异性差异很大,但两种模型之间的大气变异性非常相似,并确定大气变异性是由内部大气动力学产生的。
摘要:使用社区地球系统模型2(CESM2-LE)的大型仿真,研究了热带海面温度(SST)变化对MADDEN - JULIAN振荡(MJO)的影响,但可以通过共享的社会经济经济途径(SSP370 SECARIO)。特征是三种SST变化模式,以赤道前景变暖的变化的区域梯度为特色。MJO特征及其链接连接响应是为集群组合的,并且检查了它们与区域SST梯度变化的关系。的结果表明,与异常的弱弱的ElNiño相比,异常强的ElNiño(例如SST变化模式都显着增强MJO振幅并增强其向东扩展,例如SST变化模式。MJO振幅中的这些变化是通过A框架解释的。我们还发现,在三种SST变暖模式之间,在统计学上没有不同的土地地球地位高度重音到MJO,这可能是由于强烈的内部气候变异性。簇之间的罗斯比波源的变化也显示出与MJO远程连接的弱关系。我们的结果强调了Indo-Paci-paci-paci-Zonal SST梯度对MJO的变化的重要性,但对MJO远程触发的影响有限。
学生支持团队 (SST) 是一个成熟的同事团队,他们致力于确保所有学生都能看到他们的角色和职责,并通过以下方式广泛而频繁地分享:通过集会、海报、布告栏和学生挂在挂绳上的信息卡。所有工作人员都接受 MyConcern 培训,并在每个学年开始时阅读《安全保护政策》,该政策今年进行了更新,以确保工作人员能够识别和记录问题。SST 还参与 PSHE 课程,涵盖相关主题,如睡眠、犯罪帽、包容性和多样性,以及决策者技能。在发给家长和学生的电子邮件中,分享了 SST 的链接,其中包含有关支持福祉的活动和计划的最新信息。这些信息也可在学校网站上找到。SST 与年级学术负责人合作,审查安全和出勤问题,以确保及时采取适当行动。SST 帮助协调出勤和健康计划,并与外部机构联络,以支持所有学生的安全和福祉。学生与 SST 成员建立了信任关系,他们知道他们将得到所需的支持。
摘要 2020 年 3 月 5 日,太空监视望远镜 (SST) 从位于西澳大利亚埃克斯茅斯附近的新家获得了第一束光。从那时起,只要天气允许,SST 就会观察南半球的天空,收集视野范围内经过的明亮和暗淡物体的数据。这些令人难以置信的收集包括数以万计从未见过的物体。此外,SST 还发现了以前在公共太空目录中丢失的太空物体,并发现了数十个潜在危险的自然物体。SST 独特的位置,加上它能够看到暗淡物体的能力,增强了太空监视网络 (SSN) 改进探测、飞行安全、分离、会合评估和近距离操作的能力。随着进入太空的门槛降低,越来越多的参与者获得了进入太空的机会。这种趋势将导致更严重的拥堵和竞争。随着技术进步,绕地球轨道运行的物体的数量将继续增加,而物体的尺寸将减小,这需要传感器提供更高的灵敏度、分辨率和容量。 SST 已从传统的任务型作战转向搜索型作战,而该系统的独特能力能够满足探测和跟踪深空物体的要求。SST 正朝着进入太空监视网络的作战验收迈进。经过严格的测试,SST 将提供改进太空活动探测和表征的能力。
摘要:为了提高对影响每月海面温度(SST)变异性的海洋过程的理解,我们分析了社区地球系统模型,第2版,层次结构,其中模型仅在其海洋复杂性程度上有所不同。最现实的海洋是动态海洋模型,作为完全耦合模型(FCM)的一部分。从机械脱钩的模型(MDM)中的下一个最现实的海洋就像FCM一样,但排除了异常的风应力 - 驱动的海洋变异性。最简单的海洋是平板海洋模型(SOM)。将浮力耦合的动态海洋纳入MDM,其中包括SOM中缺乏温度对流和垂直混合,导致到处的SST变量减弱,并且与SOM相比,高纬度和赤道PACIDICE中SST异常的持久性降低。与MDM相比,大多数区域中FCM中的异常风应力 - 驱动的海洋动力学会导致更高的SST方差和更长的持续时间尺度。动态海洋的净作用,作为整体阻尼剂或异常SST方差和持久性的扩增,在区域取决于区域。值得注意的是,我们发现与FCM相比,SST变异性的热力学强迫幅度的大小相比,SOM和MDM配置中海洋模型的复杂性的努力导致了变化。这些变化部分源于海洋变化的混合层深度的差异,并在尝试量化某些海洋机制对模型之间SST变异性差异的相对贡献时应考虑。