摘要目标表皮生长因子受体(EGFR)属于受体酪氨酸激酶家族,而EGFR的过表达与预后不良和癌症进展有关。生物抑制素受体2(SSTR2)是人类中具有多种生物学功能的G蛋白偶联受体(GPCR),并且通过鼻咽癌癌(NPC)中的NF-KB信号通路进行了上调。但是,尚无研究检查NPC中的EGFR和SSTR2。这项研究旨在研究SSTR2是否与NPC中的EGFR和临床病理学特征有关。进行了生物信息学分析,以评估基于GEO数据库的EGFR和SSTR2之间的相关性。通过免疫组织化学(IHC)评估了491例NPC和50例非癌性鼻咽上皮的表达。结果生物信息学分析和IHC在NPC中显示出SSTR2和EGFR之间的正相关。与非癌性鼻咽上皮相比,NPC患者的SSTR2和EGFR的高表达显着增加。SSTR2和/或EGFR的高表达与较差的结果和更高的进展风险有关。 研究发现,接受化学放疗(CR)的患者高表达SSTR2,EGFR高表达以及SSTR2和EGFR的高共表达在无进展的无进展生存(PFS)和总生存期(OS)的预后较差。 有趣的是,SSTR2高表达,EGFR的高表达,EGFR和SSTR2的高表达以及EGFR/SSTR2的NPC患者的任何高表达都可以更好地预后,而CR结合了靶向治疗。SSTR2和/或EGFR的高表达与较差的结果和更高的进展风险有关。研究发现,接受化学放疗(CR)的患者高表达SSTR2,EGFR高表达以及SSTR2和EGFR的高共表达在无进展的无进展生存(PFS)和总生存期(OS)的预后较差。有趣的是,SSTR2高表达,EGFR的高表达,EGFR和SSTR2的高表达以及EGFR/SSTR2的NPC患者的任何高表达都可以更好地预后,而CR结合了靶向治疗。COX多元分析将SSTR2和EGFR识别为PFS的独立预测指标。结论我们的研究是第一个阐明NPC中SSTR2和EGFR之间复杂关系的研究,并为EGFR靶向治疗的潜在益处提供了对高SSTR2表达患者的潜在益处的新见解。此外,SSTR2具有NPC患者预后不良的新生物标志物。
FGS肿瘤定位的当前挑战是缺乏ICG 7的肿瘤选择性,随后无法提供足够的肿瘤与背景比(TBR),这限制了这种方式用于术中决策。8将靶向肿瘤的FGS药物的引入临床试验表明,癌症特异性药物可以提高荧光信号的预测价值,并可能在癌症治疗中起重要作用,因为它们有可能提高完整切除率和患者的预后。9 - 14然而,需要同时开发肿瘤特异性药物和灵敏成像装置的方法来评估FGS在肿瘤定位中的准确性并确定新兴技术的翻译潜力。胃肠道神经内分泌肿瘤(GEP-NETS)通常是在胰腺和胃肠道中出现的懒惰的新肿瘤,在诊断时在40%至70%的患者中发现了淋巴结和肝转移的倾向。15虽然手术是局部肿瘤的主要治疗选择,并且可以治愈,但它通常也用于转移性GEP-NET中,以最大程度地减少荷尔蒙性超分泌16的症状,并且与改善生存率有关。17 GEP-NET中的手术结局至关重要地依赖于术中定位的肿瘤,但由于其小尺寸(<1 cm)和多灶性表现而变得复杂,这可能导致较高的不完整切除率。18 - 22相反,仅对触诊来指导多灶性GEP NET的手术可能会导致过度切除未参与的段。26鉴于该患者人群中非靶向染料的好处有限,23 - 25我们先前开发了一种荧光剂,该荧光剂专门针对somato-ptatin-sthitin受体 - 培养基-2(SSTR2),这是一种细胞表面受体,在大多数NETs上过表达。26键入的靶向策略表现出了出色的诊断准确性,并且在核医学中具有悠久的使用历史,用于检测,分期和治疗网。27 - 29尽管生长抑素类似物多年来经历了迭代优化,但SSTR2靶向部分的部分仍然相对恒定,并且是验证的靶向剂的验证药效团。30相应地,我们将临床批准的放射性药物(68 Ga-dota-toc)转换为荧光对应物,68 ∕67 ga -mmc(ir800)-toc,它与放射性胆汁(68 GA:68 GA:T 1 1.2¼68MINABLE或68 MIN ga:in-67 ga:to in-67 ga:t to)双重标记。 表现。在多尺度上观察到一致的SSTR2特异性,其中包括从胰腺网患者获得的癌细胞,异种移植物和生物测量。31直接比较68 ∕67 ga -mmc(IR800)-toc至68 ga -dota -Toc对于基准对临床黄金标准的成像特性对基准成像的特性至关重要,并表明了转化FGS研究的极大潜力。
能够自我更新和多能分化的骨骼干细胞(SSC)有助于骨发育和稳态。已经报道了不同骨骼部位的几个SSC人群。在这里,我们确定了一个形而上的SSC(MPSSC)种群,其转录景观与其他骨间充质基质细胞(BMSC)不同。这些MPSSC由位于生长板下方的SSTR2或PDGFRB + KITL-标记,仅源自肥厚的软骨细胞(HCS)。这些hc衍生的MPSSC具有体外和体内自我更新和多能量的特性,在产后产生大多数HC后代。HC特异性缺失,这是运输所需的内体分选复合物的一个组成部分,会损害HC-TO-MPSSC转换并损害小梁骨的形成。因此,MPSSC是骨髓中BMSC和成骨细胞的主要来源,支持产后小梁骨形成。
肽受体放射性核素疗法(PRRT)使用177个神经内分泌肿瘤(NET)的177 lutetium-dota-crottreotate(Lutate)现在在许多国家可以使用的批准治疗方法,尽管原发性或次要抵抗力继续限制其有效性或耐用性。我们假设,全基因组CRISPR/CAS9筛查将确定对黄体和基因靶标的反应的关键介体,这可能为净患者提供新型组合疗法的机会。方法:我们在露酸盐处理的细胞中使用了全基因组CRISPR-CAS9筛选,以鉴定影响细胞对鲁丁的敏感性或抗性的基因。命中通过单基因敲除验证。耐酸性细胞,以确认露丝的摄取和保留率,并持续生长抑素受体2(SSTR2)表达。基因敲除赋予黄酸盐敏感性的基因敲除,通过使用特定抑制剂和体内分析这些抑制剂与黄体结合使用的疗效,进一步表征了药理敏感性。结果:CRISPR-CAS9屏幕确定了对PRRT的耐药性和敏感性的几个潜在目标。两个基因敲除在体外赋予了放光抗性的基因敲除,ARRB2和MVP具有与Lutate结合和保留相关的潜在机制,分别对DNA破坏修复(DDR)途径的调节。屏幕表明,可以通过在DDR途径中涉及多种基因的损失来赋予对鲁酸酯治疗的敏感性,而非同源末端结合(NHEJ)的基因丧失是最致命的。通过基因丧失或通过两个不同抑制剂抑制键NHEJ基因PRKDC(DNA-PK)的丧失导致细胞在暴露于细胞时的生存率显着降低。在SSTR2阳性携带的小鼠中,Nedisertib(DNA-PK特异性抑制剂)和黄体的组合产生了对肿瘤生长的更强控制和与单独使用的肿瘤相比的生存率。结论:DDR途径对于传感和修复辐射诱导的DNA损伤至关重要,我们的研究表明,DDR途径的调节可能涉及对PRRT的耐药性和敏感性。此外,使用DNA-PK抑制剂与Lutate PRRT结合使用显着提高了治疗在临床前模型中的疗效,从而提供了进一步的证据证明该组合的临床功效。
摘要 使用相同靶点进行成像和治疗的治疗诊断学概念可以追溯到上世纪中叶,当时放射性碘首次用于治疗甲状腺疾病。从那时起,放射性碘已在临床上广泛用于良性和恶性甲状腺疾病的诊断成像和治疗,遍及全球。然而,直到 NETTER-1 神经内分泌肿瘤试验和 VISION 试验取得积极成果后,针对 SSTR2 的治疗诊断学才获得批准,治疗诊断学才在核医学之外获得了广泛关注。推广放射性配体疗法治疗前列腺癌等高发性肿瘤需要扩大现有的治疗诊断中心并建立新的治疗诊断中心。尽管全球监管、金融和医疗环境存在很大差异,但本指南试图提供有价值的信息,使感兴趣的利益相关者能够安全地启动和运营治疗诊断中心。本指南并非旨在回答所有可能的问题,而是作为多个更详细的未来计划的总体框架。它认识到辐射安全监管细节存在地区差异,但具有全球最佳实践的共同要素。
摘要 背景 神经内分泌肿瘤 (NET) 过度表达生长抑素受体 (SSTR)。方法 我们开发了一种第二代基于配体的抗 SSTR 嵌合抗原受体 (CAR),其细胞外部分掺入了生长抑素类似物奥曲肽。结果 抗 SSTR CAR T 细胞在体外对 SSTR+NET 细胞系表现出抗肿瘤活性。杀伤活性具有高度特异性,这通过 CAR T 细胞对通过 CRISPR/Cas9 工程改造以表达 SSTR2/5 突变变体的 NET 细胞缺乏反应性来证明。当在 NSG 小鼠中过继转移时,抗 SSTR CAR T 细胞诱导了对人 NET 异种移植瘤的显著抗肿瘤活性。尽管抗 SSTR CAR T 细胞可以识别小鼠 SSTR,这通过它们对小鼠 NET 细胞的杀伤能力可以看出,但在小鼠中未观察到对表达 SSTR 的器官(例如大脑或胰腺)的明显有害影响。结论总而言之,我们的研究结果确立了抗 SSTR CAR T 细胞是 NET 患者早期临床研究的潜在候选者。更广泛地说,已知肽药物可以指导 CAR T 细胞靶向的证明可能会简化多种肽基序的潜在效用,并为多种癌症的治疗应用提供蓝图。
神经母细胞瘤是一种小儿癌,高危病例的五年生存率仅为50%。治疗方案具有侵略性,导致广泛的副作用显着影响患者的生活质量。靶向放射性核素疗法(TRT)涉及癌症特异性放射性轭物的全身施用。本论文的重点是针对生长抑素受体2(SSTR2)和抗原CD44V6的TRT,这两个靶标在神经母细胞瘤中过表达的两个靶标,放射性敏感性使细胞对辐射更敏感,可以对疗效提高疗效并有可能提高辐射DOSE所需的辐射DOS,以实现抗杀菌效应。本论文通过p53的稳定和热休克蛋白90(HSP90)的抑制作用研究了放射敏化,这两种蛋白参与细胞对DNA损伤的反应。在论文I和II中,我们研究了SSTR2靶向放射性偶联物177 lu-二烷酸酯与p53稳定的肽VIP116进行神经母细胞瘤治疗的组合。联合疗法在体外和体内研究中使用携带人神经母细胞瘤异种移植的小鼠的抗肿瘤作用增强。值得注意的是,未处理和单链的对照没有显示肾毒性。在论文III中,我们证明了将外束放射疗法与HSP90抑制剂Onalespib结合起来,在一系列神经母细胞瘤细胞系中在体外产生了添加剂或协同作用。此外,与对照组相比,用这种组合治疗的蛋白神经母细胞瘤肿瘤异种移植物具有显着提高的治疗疗效。在论文IV中,我们开发并表征了人类抗CD44V6分子放疗的抗体。这项工作确定了一名铅候选人UU-40,该候选人表现出高亲和力,强烈的肿瘤吸收和有利的生动性分发,使其成为对CD44V6表达癌症的未来使用的有前途候选人。总而言之,本论文表明,放射性化增强了神经母细胞瘤临床前模型中辐射疗法的抗肿瘤作用。我们希望这些发现能够对神经母细胞瘤儿童更有效和有害治疗。本论文还产生了一种抗CD44V6抗体,该抗体具有在靶向放射性核素治疗中的未来使用,为CD44V6表达癌症(包括神经母细胞瘤)的创新治疗铺平了道路。
不同细胞群体的位点特异性遗传和表观遗传靶向是分子神经科学的核心目标,对于理解基因调节机制至关重要,这些基因调节机制是基于复杂的表型和行为的基础。虽然最近的技术进步已经实现了对基因表达的前所未有的控制,但其中许多方法都集中在选定的模型生物上和/或需要针对不同应用的劳动密集型定制。群集定期插入短质体重复序列(基于CRISPR)的系统的简单性和模块化已改变了基因组编辑并扩展了基因调节工具箱。但是,几乎没有可用于神经元细胞选择性CRISPR调节的工具。我们设计,验证和优化的CRISPR激活(CRISPRA)和CRISPR干扰(CRISPRI)系统用于CRE重组酶依赖性基因调节。出乎意料的是,基于传统的双流传式开放阅读框(DIO)策略的CRISPRA系统即使没有CRE也会显示出漏水的靶基因诱导。因此,我们开发了一种含有内含子的CRE依赖性CRISPRA系统(SVI-DIO-DCAS9-VPR),该系统减轻了泄漏基因诱导,并在HEK293T细胞和大鼠原发性神经元培养物中的内源基因上的传统DIO系统表现优于传统的DIO系统。使用基因特异性CRISPR SGRNA,我们证明了SVI-DIO-DCAS9-VPR可以以CRE特异性方式激活许多大鼠或人类基因(GRM2,TENT5B,FOS,SSTR2和GADD45B)。为了说明该工具的多功能性,我们创建了一个平行的CRISPRI构建体,该构建体仅在CRE存在下仅在HEK293T细胞中成功抑制了荧光素酶报告器的表达。这些结果为跨不同模型系统的CRE依赖性CRISPR-DCAS9方法提供了强大的框架,并在与常见的CRE驱动线或通过病毒载体交付时实现了细胞特异性靶向。
对不同细胞群体进行位点特异性遗传和表观遗传靶向是分子神经科学的核心目标,对于理解复杂表型和行为背后的基因调控机制至关重要。虽然最近的技术进步使对基因表达的控制达到了前所未有的程度,但其中许多方法都集中在选定的模型生物上和/或需要针对不同应用进行劳动密集型定制。基于 CRISPR 的系统的简单性和模块化已经改变了基因组编辑的这一方面,提供了各种可能的应用和目标。然而,目前很少有可用于神经元中细胞选择性 CRISPR 调控的工具。在这里,我们设计、验证和优化了 CRISPR 激活 (CRISPRa) 和 CRISPR 干扰 (CRISPRi) 系统,以实现 Cre 重组酶依赖性基因调控。出乎意料的是,基于传统双链倒置开放阅读框 (DIO) 策略的 CRISPRa 系统在没有 Cre 的情况下表现出泄漏的靶基因诱导。因此,我们开发了一种内含子 Cre 依赖性 CRISPRa 系统 (SVI-DIO-dCas9-VPR),该系统可缓解泄漏基因诱导,并且在 HEK293T 细胞和大鼠原代神经元培养物中,其在内源基因方面的表现均优于传统 DIO 系统。使用基因特异性 CRISPR sgRNA,我们证明 SVI-DIO-dCas9-VPR 可以以 Cre 特异性方式激活高度可诱导基因 (GRM2、Tent5b 和 Fos) 以及中等可诱导基因 (Sstr2 和 Gadd45b)。此外,为了说明此工具的多功能性,我们创建了一个平行的 CRISPRi 构建体,仅在存在 Cre 的情况下,它才成功抑制了 HEK293T 细胞中荧光素酶报告基因的表达。这些结果为不同模型系统中的 Cre 依赖性 CRISPR-dCas9 方法提供了一个强大的框架,并且当与常见的 Cre 驱动线或通过病毒载体进行 Cre 递送相结合时,将实现细胞特异性靶向。
