根据频率范围,EEG 信号可以区分出六种不同的大脑节律:delta(0.5 至 4 Hz)、theta(4 至 8 Hz)、alpha(8 至 13 Hz)、mu(8 至 13 Hz)、beta(13 至 30 Hz)和 gamma(25 至 100 Hz)。delta 节律发生在幼儿或成人深睡或脑部异常的人身上,由低于 3.5 Hz 的频率成分组成。theta 节律发生在人疲劳且无法集中注意力时,主要出现在颞叶和顶叶区域。枕叶用于记录 alpha 节律。当人们睡着时,这种节律会完全消失,但当他们平静而清醒、困倦但清醒且疲劳时,它就会出现。此外,如果人们试图保持清醒,alpha 将占主导地位。beta 节律主要在顶叶和额叶区域产生。当一个人注意力集中、兴奋或激动时,就会出现 Beta 节律(Brismar,2007;Miller,2007;Foong 等人,2019)。mu 节律和 gamma 节律可以分别从感觉运动区域和躯体感觉皮层记录下来。gamma 节律在学习、记忆和处理数据方面至关重要。此外,它还出现在高级认知任务中(Herrmann 和 Demiralp,2005;Fazel-Rezai 等人,2013)。
10.4.4 使用时间序列向导从 Microsoft Excel 或“.csv”文件导入数据............................................................................................................. 150
大脑计算机界面(BCI)连接人类和机器。作为BCI的应用,BCI Speller(用于与物理残疾的文本输入接口)已得到广泛研究。BCI拼写器所需的性能是大量的同时输入和高正确的响应率,类似于PC键盘[1]。在我们先前的研究中,我们研究了具有50个输入的稳态视觉引起的电势(SSVEP)–BCI拼写器[2]。如果可以同时输入50个,则可以分配所有日本的Hiragana和标点符号。具体来说,将不同的眨眼频率分配给50个屏幕字符,并从EEG中检测到响应的差异。但是,脑电图检测到的频率范围有一个限制。此外,频划分越少,检测就越困难。因此,必须改进信号处理算法。
脑机接口 (BCI) 连接人与机器。作为 BCI 的一种应用,BCI 拼写器(一种用于与肢体残疾人士交流的文本输入接口)得到了广泛的研究。BCI 拼写器的性能要求是大量同时输入和高正确响应率,类似于 PC 键盘 [1]。在我们之前的研究中,我们研究了具有 50 个输入的稳态视觉诱发电位 (SSVEP)-BCI 拼写器 [2]。如果可以同时输入 50 个,则可以分配所有日语平假名和标点符号。具体而言,为 50 个屏幕字符分配不同的眨眼频率,并从 EEG 中检测到响应的差异。然而,EEG 可以检测到的频率范围是有限的。此外,频率划分越细,检测就越困难。因此,必须改进信号处理算法。
1. SSV 登录所有当前已注册的诊所均可使用其 SSV PIN 和医疗执照号码登录 SSV 计划注册网站。输入您的完整 PIN(包括任何字母前缀,例如“AV”、“E”或“H”)。对于执照号码,请使用凭证(例如 MD)加上您的主要提供商执照号码的五位数字。如果您要注册多个站点,则必须为每个站点使用单独的计算机或浏览器。如需 SSV 登录帮助,请联系您的免疫接种代表或 Lauren Piluso,电话:222-4639,电子邮件:lauren.piluso@health.ri.gov
摘要 - 在输入非字母语言的字母时,有两种输入界面:罗马输入或输入语言字母。当输入日文字母时,日文五十字母类型界面比字母界面更有效。在使用 EEG 输入字母的界面中,使用视觉诱发电位之一的稳态视觉诱发电位 (SSVEP) 的界面称为 SSVEP-脑机接口 (BCI)。本研究的目的是设计和评估使用日文五十字母类型的 SSVEP-BCI,它比使用字母表的罗马字母输入更有效。为了处理 SSVEP-BCI 中的 50 种不同输入类型,我们提出了刺激频率设计和显示空间融合和分析算法等方法。特别是,使用显示空间中的位置关系对 SSVEP-BCI 的分析方法包含许多新颖之处。结果,我们实现了 77.10% 的准确率和 75.08 位/分钟的 ITR。这相当于每分钟输入15.42个50字的日文字母。我们还评估了显示空间中输入和输出对象的位置关系。研究表明,由于选择了显示空间中水平相邻的对象,因此存在许多误判。
摘要 — 为了增强基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 的目标识别性能,已经提出了各种空间滤波器。当前的方法仅从相应刺激中提取目标相关信息来学习空间滤波器参数。然而,来自邻近刺激的 SSVEP 数据也包含目标刺激的频率信息,可用于进一步提高目标识别性能。在本文中,我们提出了一种结合来自邻近刺激的 SSVEP 来增强目标相关频率信息的新方法。首先,通过最大化对应于目标及其邻近刺激的 SSVEP 数据的协方差之和来获得空间滤波器。然后计算空间滤波模板和测试数据之间的相关特征以进行目标检测。为了进行性能评估,我们使用来自 35 名受试者的 40 类基准数据集和来自 11 名受试者的 12 个目标自收集数据集进行了离线实验。与最先进的空间滤波方法相比,所提出的方法在分类准确率和信息传输速率 (ITR) 方面表现出优势。比较结果证明了所提出的空间滤波器对于基于 SSVEP 的 BCI 中的目标识别的有效性。
摘要 - 稳定的视觉诱发电位(SSVEP)基于脑部计算机界面(BCIS),由于其快速通信速率和高信噪比,近年来已经大量研究了基本的研究。传输学习通常用于通过来自源域的辅助数据来提高基于SSVEP的BCI的性能。这项研究提出了一种通过转移模板和转移的空间过滤器来增强SSVEP识别性能的间接转移学习方法。在我们的方法中,通过多个协方差最大化训练空间过滤器,以提取与SSVEP相关的信息。培训试验,单个模板和人工构造的参考之间的关系涉及培训过程。将空间过滤器应用于上述模板以形成两个新的传输模板,并通过最小平方的回归获得了传输的空间滤波器。可以根据源主题和目标受试者之间的距离来计算不同源主题的贡献得分。最后,为SSVEP检测构建了四维特征向量。为了证明所提出的方法的有效性,采用了公开可用的数据集和一个自收集的数据集进行绩效评估。广泛的实验结果验证了提出的改善SSVEP检测方法的可行性。
摘要:在本文中,我们提出了基于规范相关分析(CCA)的EEG信号的分类算法,并与自适应过滤整合。它可以增强大脑 - 计算机接口(BCI)拼写中的稳态视觉诱发电势(SSVEP)的检测。通过删除背景脑电图(EEG)活动,在CCA算法前采用了一种自适应过滤器来提高SSVEP信号的信噪比(SNR)。开发了整体方法是为了整合与多个刺激频率相对应的递归最小二乘(RLS)自适应过滤器。该方法由实际实验从六个目标记录的SSVEP信号和Tsinghua University的40个目标的公共SSVEP数据集中记录下来的SSVEP信号。比较了CCA方法的精度和基于CCA的集成RLS滤波器算法(RLS-CCA方法)。实验结果表明,与纯CCA方法相比,提出的基于RLS-CCA的方法显着提高了分类精度。尤其是当脑电图的数量较低时(三个枕发电极和五个非枕骨电极)时,其优势更为明显,精度达到91.23%,这更适合于高密度EEG不容易收集的可穿戴环境。
摘要:与传统的生物特征识别方法相比,由于其独特的特性,大脑生物识别技术引起了科学界的越来越多的关注。许多研究表明,脑电图特征在个人之间是不同的。在这项研究中,我们通过考虑特定频率的视觉刺激引起的大脑反应的空间模式提出了一种新的方法。更具体地说,我们建议,用于识别个体,将常见的空间模式与专门的深度学习神经网络相结合。采用常见的空间模式使我们能够设计个性化的空间过滤器。此外,在深层神经网络的帮助下,空间模式被映射到新的(深)表示中,在这些表示中,以高正确的识别率进行了个人之间的歧视。我们在两个稳态视觉诱发的潜在数据集上进行了全面比较,分别由三十五和11受试者组成的两个稳态视觉诱发的潜在数据集进行了全面比较。此外,我们的分析包括稳态视觉诱发的潜在实验中的大量闪烁频率。对这两个稳态视觉诱发潜在数据集进行的实验显示了我们方法在人识别和可用性方面的有用性。所提出的方法在大量的视觉刺激频率上实现了99%的平均正确识别率。