摘要 - 稳态视觉诱发电位(SSVEP)当前是脑部计算机界面(BCI)中使用最广泛的范例之一。尽管SSVEP-BCI的特征是它们的高且稳健的分类性能,但从用户体验的角度来看,反式刺激的重复表现是不舒服的。的确,SSVEP刺激的低水平视觉特征使它们随着时间的流逝而紧张,并且可能会破坏需要持续关注的任务。他们甚至可以诱导癫痫发作。本研究探讨了刺激幅度深度(90%的幅度降低),以设计SSVEP刺激,以改善用户舒适性的解决方案。在低振幅和标准的全幅度SSVEP刺激之间,系统比较了不同管道获得的分类精度。结果揭示了使用与任务相关的组件分析(TRCA)分类方法的高(99.8%)和低幅度(80.2%)刺激的高分类精度。目前的发现证明了减少SSVEP刺激幅度以增加用户舒适度为透明BCI操作铺平道路的有效性。
稳态视觉诱发电位 (SSVEP) 是一种与周期性视觉刺激频率锁定的大脑活动( Zander 等人,2009 年)。与其他模式(例如运动想象 (Nicolas-Alonso and Gomez-Gil, 2012))相比,SSVEP 具有相对较高的准确度和信息传输率,并且对用户所需的培训最少,因此被广泛应用于脑机接口 (BCI) 中。标准的基于 SSVEP 的 BCI 在工作空间中包含多个刺激,每个刺激以不同的频率闪烁,而脑电图 (EEG) 主要从枕叶测量。测得的 EEG 反映了用户视觉上关注的刺激的频率,以及该频率的谐波。谐波的存在为解码过程提供了更多的参考点,但也给基于 SSVEP 的 BCI 的设计带来了额外的复杂性和挑战。例如,如果同一个 BCI 中对两个不同的刺激同时使用某个频率及其谐波,那么在记录的这两个刺激的脑电图中就会有共同的频率,这可能会混淆解码算法。因此,在文献中,一些研究有意避免在刺激中使用具有共同谐波的频率(Volosyak 等,2009;Chen 等,2015)。这个谐波问题,加上人脑对周期性视觉刺激的响应频率范围有限(Regan,1989),限制了标准基于 SSVEP 的 BCI 中可使用的唯一频率的数量;即,低信噪比脑电图记录和小的频率分离会损害解码性能。因此,在需要大量唯一频率来标记所有目标的场景中使用标准基于 SSVEP 的 BCI 具有挑战性。为了解决这个问题,已经引入了多频刺激方法,在每个刺激中使用多个频率,其中两个频率(双频)是最广泛使用的模态(Shyu 等,2010;Zhang 等,2012;Chen 等,2013;Hwang 等,2013;Kimura 等,2013;Chang 等,2014;Mu 等,2021a)。然而,这些研究主要集中于介绍多频刺激方法,并没有探讨频率选择方法。随着用于标记每个目标的频率数量的增加,在每个刺激或目标上使用多个频率可以成倍增加可以在工作空间中表示的目标数量。多频刺激产生复杂的周期性刺激信号,从而触发更复杂的 SSVEP 反应。在 Mu 等人的研究中, (2021a)表明,多频率 SSVEP 响应不仅包含输入频率及其谐波,还包含输入频率的整数线性组合,这些组合具有在记录的 SSVEP 中更可能观察到的低阶相互作用。注意,相互作用的顺序定义为
摘要 - 目的:通过使用单个校准数据,当前的最新方法显着提高了稳态诱发电位(SSVEP)的检测性能。但是,耗时的校准会限制了培训试验的数量,并可能导致视觉疲劳,从而削弱了单个培训数据的效率。为解决此问题,本研究提出了一种新型的受试者间和受试者内最大相关性(IISMC)方法,以通过采用跨主体间和受试者的相似性和可变性来增强SSVEP识别的鲁棒性。通过有效的转移学习,在相同任务下的类似经验在主题之间共享。方法:IISMC从自己和其他受试者中提取主题的特定信息和与任务相关的相似信息,通过最大化和内部对象内相关性来执行相同任务。多个弱分类器是由几个现有主题构建的,然后集成以通过平均加权来构建强晶格。最后,为目标识别获得了强大的融合预测指标。结果:在35个受试者的基准数据集上验证了所提出的框架,实验结果表明,IISMC获得的性能要比与TART与任务相关的成分分析(TRCA)的状态更好。明显:所提出的方法具有开发高速BCI的巨大潜力。
最近,基于脑机接口 (BCI) 的机械臂控制系统已被用于帮助残疾人士提高无需身体运动的交互能力。然而,由于脑电图 (EEG) 信号的不稳定性以及自发脑电图活动的干扰,在三维 (3D) 空间中用机械臂执行所需任务是一项主要挑战。此外,机械手在 3D 空间中的自由运动控制是一项复杂的操作,需要更多的输出命令和更高的脑活动识别精度。基于上述内容,设计了一种基于稳态视觉诱发电位 (SSVEP) 的同步 BCI 系统,该系统具有六个刺激目标,以实现七自由度 (7-DOF) 机械臂的运动控制功能。同时,应用了一种基于模板的新型方法,该方法从不同的受试者构建优化的通用模板 (OCT),并从通用模板和多通道脑电图信号中学习空间滤波器,以提高 SSVEP 识别精度,称为基于 OCT 的典型相关分析 (OCT-CCA)。基于公开基准数据集的离线实验对比结果表明,提出的OCT-CCA方法与CCA和基于单独模板的CCA(IT-CCA)相比,检测精度显著提高,尤其是在使用较短数据长度的情况下。最后,对五名健康受试者进行了在线实验,实现了机械臂实时控制系统。结果表明,五名受试者均能独立完成控制机械臂到达三维空间指定位置的任务。
摘要:作为一种广泛使用的脑机接口(BCI)范式,基于稳态视觉诱发电位(SSVEP)的BCI具有信息传输速率高、对伪影容忍度高、在不同用户之间表现稳健等优势。然而,长时间重复刺激导致心理疲劳的发生率是基于SSVEP的BCI的一个关键问题。音乐通常被用作一种方便、非侵入性的缓解心理疲劳的方法。本研究通过在长时间的SSVEP-BCI任务中引入不同模式的背景音乐,探讨音乐对心理疲劳的补偿作用。通过脑电图功率指数、SSVEP幅度和信噪比的变化来评估被试的心理疲劳。研究结果表明,在SSVEP-BCI任务中引入激动人心的背景音乐可有效缓解被试的心理疲劳。此外,对于连续的 SSVEP-BCI 任务,在休息间隔阶段使用舒缓背景音乐的音乐模式组合被证明能更有效地减少用户的精神疲劳。这表明背景音乐可以为长时间的基于 SSVEP 的 BCI 实现提供切实可行的解决方案。
本文讨论了一种完全可定制的板载芯片 (COB) LED 设计,可同时诱发两种大脑反应(稳态视觉诱发电位 (SSVEP) 和瞬态诱发电位 P300)。考虑到脑机接口 (BCI) 中可能的不同模式,SSVEP 被广泛接受,因为它需要的脑电图 (EEG) 电极数量较少且训练时间最短。这项工作的目的是制作一个混合 BCI 硬件平台,以精确诱发 SSVEP 和 P300,同时减少疲劳并提高分类性能。该系统包括四个独立的径向绿色视觉刺激,由 32 位微控制器平台单独控制以诱发 SSVEP,以及四个以随机间隔闪烁以生成 P300 事件的红色 LED。该系统还可以记录可用于分类的 P300 事件时间戳,以提高准确性和可靠性。通过控制乐高机器人向四个方向移动,测试了混合刺激的实时分类准确性。2020 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可证开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
神经科学是神经科学的新兴学科,旨在通过分析一组观众的大脑活动来提供新的效果技术。几项神经科学研究试图在电影筛选过程中跟踪精神状态的时间变化;但是,仍需要开发有效和鲁棒的脑电图(EEG)特征,以精确地跟踪大脑状态。本研究提出了一种新的方法,用于通过采用稳态的视觉诱发潜力(SSVEP)来估计电影筛选期间一组个体的情绪唤醒变化,这是通过定期视觉刺激的表现引起的广泛使用的EEG响应。先前的研究报告说,每个个体的情绪唤醒调节了SSVEP响应的强度。基于这种现象,电影剪辑被叠加在背景上,以特定的频率引起了SSVEP响应。向六名健康的男性参与者提供了两个情感上引起的电影剪辑,而从枕骨通道记录了脑电图信号。然后,我们调查了引起较高SSVEP响应的电影场景是否与在单独的实验性会话中被评为37位观众最令人印象深刻的场景的电影相吻合。我们的结果表明,在六个参与者中平均的SSVEP响应可以准确地预测每部电影的整体印象,并通过更大的个体进行评估。
稳态视觉诱发电位 (SSVEP) 被广泛用于指示人类脑电图 (EEG) 研究中自上而下的认知处理。通常,会呈现两个以不同时间频率 (TF) 闪烁的刺激,每个刺激都会在其闪烁频率下在 EEG 中产生不同的反应。然而,在存在竞争性闪烁刺激的情况下,EEG 中的 SSVEP 反应如何仅由于感觉相互作用而受到调节尚不清楚。我们之前已经在从清醒猴子记录的局部场电位 (LFP) 中表明,当两个重叠的全屏光栅以不同的 TF 反相时,存在不对称的 SSVEP 反应抑制,较低 TF 的抑制更大,这进一步取决于光栅的相对方向(平行光栅的抑制和不对称性比正交光栅更强)。在这里,我们首先在男性和女性人类 EEG 记录中证实了这些影响。然后,我们在比之前研究更广的范围内绘制了一个刺激(目标)对竞争刺激(掩码)的反应抑制。令人惊讶的是,我们发现抑制在低频下通常并不强,而是根据目标 TF 系统地变化,表明两个竞争刺激之间存在局部相互作用。这些结果在人类 EEG 和猴子 LFP 和皮层电图 (ECoG) 数据中都得到了证实。我们的结果表明,多个 SSVEP 之间的感官相互作用比以前显示的更复杂,并且受到局部和全局因素的影响,强调需要谨慎解释涉及 SSVEP 范式的研究结果。
摘要:大脑 - 计算机界面(BCIS)广泛用于严重身体残疾患者的控制应用中。一些研究人员的目的是开发实用的脑控制轮椅。基于稳态的视觉诱发电势(SSVEP)的现有脑电图(EEG)基于BCI是为了控制设备控制的。这项研究利用了可靠的现有系统的快速响应(QR)代码视觉刺激模式。使用提出的带有四个可振动频率的视觉刺激模式生成四个命令。此外,我们采用了SSVEP特征提取的相对功率谱密度(PSD)方法,并将其与绝对PSD方法进行了比较。我们设计了实验来验证所提出系统的效率。结果表明,所提出的SSVEP方法和算法在实时处理中产生的平均分类精度约为92%。对于通过基于独立的控制模拟的轮椅,提议的BCI控制需要比键盘控制的时间大约五倍以进行实时控制。使用QR码模式的建议的SSVEP方法可用于基于BCI的轮椅控制。然而,由于长期连续控制,它因视觉疲劳而受到影响。我们将在严重的身体残障人士中验证和增强拟议的轮椅控制系统。