在此阶段,安全且可持续的设计可以定义为化学品上市前的方法,该方法侧重于提供功能(或服务),同时避免可能对人类健康或环境有害的数量和化学特性,特别是可能具有(生态)毒性、持久性、生物累积性或流动性的化学品组。应从生命周期的角度,通过最大限度地减少化学品对环境的影响,特别是对气候变化、资源利用、生态系统和生物多样性的影响,来确保整体可持续性。
摘要:当前的欧洲(EU)政策,即绿色交易,设想化学药品的安全可持续实践,包括纳米型(NFS),在创新的最早阶段。根据设计(SSBD)框架在理论上安全且可持续的框架是从欧盟的协作努力确定的,用于定义每个SSBD维度的定量标准,即人类和环境安全维度以及环境,社会,社会和经济可持续性维度。在这项研究中,我们针对安全维度,并展示了从可发现,可访问,可互操作和可重复使用的数据得出的定量内在危害标准的旅程。数据策划并合并为开发新方法方法,即基于回归和分类机器学习算法的定量结构 - 活性关系模型,目的是预测危害类别。模型利用系统(即流体动力大小和多分散性指数)和非系统(即元素组成和核心大小) - 依赖性纳米级特征与生物学内部属性和实验性条件结合使用,用于各种银NFS,功能性抗药性抗药性纺织品和宇宙型的实验条件。在第二步中,通过利用专家推理制定的贝叶斯网络结构来获得可解释的规则(标准),然后是确定性因素。概率模型的预测能力为≈78%(所有危险类别的平均准确性)。在这项工作中,我们展示了如何从SSBD框架的概念化转变为使用务实实例的现实实现。这项研究揭示了(i)在合成阶段的安全方面考虑的定量内在危害标准,(ii)(ii)内部的挑战,以及(iii)生成和蒸馏此类标准的未来方向,这些方向可以喂养SSBD范式。具体而言,标准可以指导材料工程师合成固有的纳米形式固有更安全的NF,而在创新的最早阶段,这些NFS可以在先前合成和假设的尚未合成的nfs nfs nfs的硅化毒性筛选中快速且具有成本效率。关键字:设计,纳米型,纳米颗粒,定量结构 - 活动关系,机器学习,贝叶斯规则,内在危险标准
摘要:当前的欧洲(EU)政策,即绿色交易,设想化学药品的安全可持续实践,包括纳米型(NFS),在创新的最早阶段。根据设计(SSBD)框架在理论上安全且可持续的框架是从欧盟的协作努力确定的,用于定义每个SSBD维度的定量标准,即人类和环境安全维度以及环境,社会,社会和经济可持续性维度。在这项研究中,我们针对安全维度,并展示了从可发现,可访问,可互操作和可重复使用的数据得出的定量内在危害标准的旅程。数据策划并合并为开发新方法方法,即基于回归和分类机器学习算法的定量结构 - 活性关系模型,目的是预测危害类别。模型利用系统(即流体动力大小和多分散性指数)和非系统(即元素组成和核心大小) - 依赖性纳米级特征与生物学内部属性和实验性条件结合使用,用于各种银NFS,功能性抗药性抗药性纺织品和宇宙型的实验条件。在第二步中,通过利用专家推理制定的贝叶斯网络结构来获得可解释的规则(标准),然后是确定性因素。概率模型的预测能力为≈78%(所有危险类别的平均准确性)。在这项工作中,我们展示了如何从SSBD框架的概念化转变为使用务实实例的现实实现。这项研究揭示了(i)在合成阶段的安全方面考虑的定量内在危害标准,(ii)(ii)内部的挑战,以及(iii)生成和蒸馏此类标准的未来方向,这些方向可以喂养SSBD范式。具体而言,标准可以指导材料工程师合成固有的纳米形式固有更安全的NF,而在创新的最早阶段,这些NFS可以在先前合成和假设的尚未合成的nfs nfs nfs的硅化毒性筛选中快速且具有成本效率。关键字:设计,纳米型,纳米颗粒,定量结构 - 活动关系,机器学习,贝叶斯规则,内在危险标准
▶ 开发具有成本效益、可扩展的解决方案,减少交通运输对环境的影响,提高运营效率和减排量,为难以减排的行业创造可持续燃料,并推进数字工具以提高交通运输的自主性和可持续性,同时遵守安全和可持续设计(SSbD)原则和生命周期评估(LCA)。
我们的实验室通过整合文献和毒性大数据来开发化学物质的不良结果途径(AOP)。通过AOP,我们基于新方法方法来提高AI驱动的毒性预测,并通过下一代风险评估(NGRA)开发智能化学管理系统。我们的重点通过分析基于物理化学特性的毒性机制,扩展到在研发阶段开发更安全的材料的安全性逐态(SSBD)。
1研究,技术农业和食品部(IDIA),单一研究研究(CSIC),CTRA。ofcoruña,km gmoles@ciimar.up.pt(G.M.); (M.C。<。); (A.V.); (G.P.-R。); 2 MATE RIAUX(CRIMAT)的研究中心和Marinha跨学科中心,科学搜索国家中心(CNRS),法国图卢兹31400 AV Edouard Belin 16;信件:jmnavas@inia.csic.es;电话。: +34-9
新一代化学品和先进材料带来了前所未有的机遇,但也带来了复杂的环境、健康和安全风险以及确保环境、社会和经济可持续性的挑战。要充分管理这些风险/挑战,需要转向安全和可持续设计 (SSbD) 系统方法,该方法将安全性、功能性和可持续性方面的技术数据与决策者在创新早期研发阶段的权衡相结合。定义这些基本方面的指标并将其集成到多标准决策分析模型中,是支持开发更安全、更可持续的技术的一种方式,符合联合国可持续发展目标 (SDG 3、6、9、12、13)。
Caldeira 等人。(2022)。通过设计实现化学品和材料的安全性和可持续性 回顾安全性和可持续性维度、方面、方法、指标和工具。https://doi.org/10.2760/879069 Caldeira 等人。(2022)。通过设计实现化学品和材料的安全性和可持续性 - 化学品和材料标准定义和评估程序的框架。https://doi.org/10.2760/487955 Caldeira 等人。(2023)。通过设计实现化学品和材料的安全性和可持续性 - SSbD 框架在案例研究中的应用。https://doi.org/10.2760/329423 欧洲委员会。(2022)。委员会于 2022 年 12 月 8 日建议建立欧洲“安全和可持续设计”化学品和材料评估框架。布鲁塞尔,2022 年 12 月 8 日 C(2022) 8854 最终版 https://eur- lex.europa.eu/eli/reco/2022/2510/oj
在2022年,欧盟委员会披露了与安全和可持续性方面联系的框架的提议,其主要目标是提高对无毒环境的创新,并在这方面保留作为领先者的立场。1通过设计(SSBD)框架的这种安全和可持续性旨在识别和替代高度关注的化学品,并指出安全可持续的化学品和材料继续开发它们。2023年和2024年是测试框架并提交反馈以改进和进一步发展框架的时期。1在这种情况下,我们进行了涉及基于石墨烯的材料(原始石墨烯,氧化石墨烯和氧化石墨烯)的案例研究。石墨烯及其亲戚在2004年发现后获得了兴趣,这要归功于它们在电子和能量部门中非常需要的特性,具有出色的导热性和电导率,柔韧性和机械强度。2