人们经常会犯一些影响他人的错误。假设一家垄断竞争企业在考虑预计需求和竞争对手价格的情况下,选择价格以实现利润最大化。企业决策过程的复杂性表明,即使问题定义明确,并且肯定存在理想的解决方案,但确定该解决方案却很困难。因此,企业可能无法设定最佳价格。这种偏离理想价格的情况可能会影响所有其他竞争对手从设定正确价格中获得的收益——例如,通过改变他们面临的剩余需求。此外,其他企业的定价可能会直接影响设定正确价格的成本——例如,如果激烈的竞争导致管理压力,从而导致决策更糟糕。因此,观察到的定价源于战略错误的过程:不完善的优化和战略互动的结合可能会影响精确决策的收益和成本。为了研究这种战略错误,本文引入了一个非参数、状态依赖的随机选择模型,该模型适用于具有连续行动的连续博弈。代理人的收益取决于他们自己的行为、外生状态以及他人行为横截面分布的一维总和。这种设定在宏观经济模型中普遍存在,包括定价模型(Woodford,2003 年;Ma´ckowiak 和 Wiederholt,2009 年;Costain 和 Nakov,2019 年)、生产模型(Angeletos 和 La'O,2010 年、2013 年;Benhabib 等人,2015 年;Chahrour 和 Ulbricht,2023 年)以及更普遍的选美游戏模型(Morris 和 Shin,2002 年;Angeletos 和 Pavan,2007 年;Bergemann 和 Morris,2013 年;Huo 和 Pedroni,2020 年)。代理面临着成本高昂的控制问题:根据他们对基本面和他人行为的猜测,他们会选择一种随机选择模式,在采取最佳行动和惩罚过于精确的行动之间做出权衡。我们引入了一组新的控制成本函数,它们是状态可分离的,即总控制成本在各个状态下是加性的。这些成本使我们能够对几种以前未曾联合研究过的决策摩擦进行建模。第一种是事后错误优化,如控制成本(Stahl,1990;Van Damme,1991)和量子反应平衡(McKelvey 和 Palfrey,1995;Goeree 等人,2016)等文献中所述,其中代理的不精确行动会对给定世界状态下的战略激励做出反应。第二个是事前规划摩擦,如博弈论中关于昂贵信息获取的文献(参见例如 Yang ,2015 ;Morris 和 Yang ,2022 ;H´ebert 和 La'O ,2022 ;Denti ,2023 ),其中代理必须权衡精确规划状态的好处与该状态永远不会实现的成本。第三个是控制成本的外生和内生状态依赖性,如 H´ebert and La'O ( 2022 ) 和 Angeletos and Sastry ( 2023 ) 所述。第四个是主体的考虑集的均衡决定,即主体所采取的行动子集,如 Matˇejka ( 2015 ) 和 Stevens ( 2019 ) 所述。
AI“指的是通过分析其环境并采取行动(并具有一定程度的自治)来实现特定目标来表现出智能行为的系统(欧洲委员会2018年)。由于此定义是正式的和足够的一般性,足以涵盖对该领域的最常见理解,因此它构成了一个有用的起点。的确,基于这种理解,欧盟委员会的高级专家小组将AI的更详细的定义开发为“由人类设计的系统,鉴于人类设计的系统,它通过一个复杂的目标来在体育或数字世界中发挥作用,通过对所收集的或不结构的数据来解释这些数据,并根据该数据衍生出最大的方法来启动(S),从而(S)来解释他们的环境,从而(S)提出了这些知识(S)(S)(S)目标AI系统还可以通过分析环境如何受到其先前的行动的影响来学习其行为”(Aihleg 2018)超出有关AI定义的现有争议,还可以将以下要素确定为其功能至关重要:通过传感器对环境的感知;对数据的推理/决策;并通过执行者进行动作。ai如此构想的构想在不同领域(从医学到军事)开设了几种可能性,从而引发了多个道德问题。为了说明不久的是,AI和自动化的进步可能会使人们及其活动及其活动以及全世界更快的信息分布,从而提高几种安全性和隐私挑战(Stahl and Wright 2018)。此外,AI在医学,军事和自动武器发展中的潜在促进作用引起了有关不可靠和问责制的问题(Hammond 2015; Hallaq等人。2017; HOROW- ITZ 2018)。与自动化一起,AI可能会带来遥远的经济和社会变革,从而对劳动力市场产生影响(Aicardi等人。2018)。仍在争论哪些工作可能受到影响;但是,有人同意AI将改变工作要求以及依赖人类能力和技能的职位的性质(Perisic 2018)。它可能会通过创建新的并消除现有的其他人(EGE 2018),并通过例如预测分析对传统的招聘和招聘实践产生重大影响。迫切的道德问题也出现在最先进的AI研究类型之一中:自学AI。自我学习的AI在没有人类数据,指导或领域知识的情况下从强化中学习,超出了基本规则(Silver等2017)。根据其开发人员,没有任何以前的特定知识自我学习的AI可以实现“超人的熟练程度”(Silver等人2017)。到目前为止,这种AI已在有限的上下文中成功应用,尤其是在国际象棋,GO和扑克之类的游戏中,即使通过极其复杂的计算,也可以预测所有相关变量。这些系统在现实世界环境(例如自动驾驶汽车)中的应用提出了尚未解决的具有挑战性的问题,尽管我们不能排除他们的解决方案只是时间问题(Sokol 2018)。没有猜测关注大规模潜在场景的“大道德”问题(例如,超级智能AI接管)(Muller 2016),很明显,很明显,
人工智能“是指通过分析环境并采取行动(具有一定程度的自主性)来实现特定目标而表现出智能行为的系统”(European-Commission 2018)。因为这个定义足够正式和通用,能够涵盖该领域的大多数常见理解,所以它是一个有用的起点。事实上,正是基于这种理解,欧盟委员会高级专家组对人工智能进行了更为细致的定义,即“由人类设计的系统,在给定复杂目标的情况下,通过感知环境、解释收集到的结构化或非结构化数据、根据从这些数据中获得的知识进行推理并决定为实现既定目标而采取的最佳行动(根据预定义参数)来在物理或数字世界中行动。人工智能系统还可以通过分析环境如何受到其先前行为的影响来学习调整其行为”(AIHLEG 2018)。除了有关人工智能定义的现有争议之外,我们可以确定以下对其功能至关重要的要素:通过传感器感知环境;根据感知到的数据进行推理/决策;通过执行器进行驱动。如此构想的人工智能为从医学到军事的不同领域开辟了多种可能性,从而引发了多重伦理问题。简而言之,人工智能和自动化的进步可能使对人员及其活动的监视、监控和跟踪更加普遍,以及信息在世界范围内更快地传播,这带来了许多安全和隐私挑战(Stahl and Wright 2018 )。此外,人工智能在医学、军事和自主武器发展中的潜在促进作用引发了关于不可靠性和问责制的问题(Hammond 2015 ;Hallaq et al. 2017 ;Horowitz 2018 )。此外,人工智能和自动化一起,可能会带来深远的经济和社会变革,对整个劳动力市场产生影响(Aicardi 等人,2018 年)。哪些类型的工作可能受到影响仍存在争议,但人们一致认为,人工智能将改变工作需求以及依赖人类能力和技能的职位的性质(Perisic,2018 年)。它可能会创造新的职位并消除现有的职位(EGE,2018 年),并通过预测分析等方式对传统的招聘和招募实践产生重大影响。在最先进的人工智能研究类型之一:自学习人工智能中,也出现了紧迫的伦理问题。自学习人工智能可以通过强化学习,不需要人类数据、指导或基本规则以外的领域知识(Silver 等人,2017 年)。据其开发人员称,自学习人工智能无需任何先前的专业知识即可“在具有挑战性的领域达到超人的水平”(Silver 等人,2017 年)。迄今为止,这种人工智能已在有限的环境中成功应用,特别是在国际象棋、围棋和扑克等游戏中,所有相关变量都可以预测,即使通过极其复杂的计算。这些系统在现实环境中的应用(例如自动驾驶汽车)提出了尚未解决的具有挑战性的问题,尽管我们不能排除它们的解决只是时间问题的可能性(Sokol 2018)。如果不考虑关注大规模潜在场景(例如超级智能 AI 接管)的“大伦理”问题(Muller 2016),很明显
人工智能“是指通过分析环境并采取行动(具有一定程度的自主性)来实现特定目标而表现出智能行为的系统”(European-Commission 2018)。因为这个定义足够正式和通用,能够涵盖该领域的大多数常见理解,所以它是一个有用的起点。事实上,正是基于这种理解,欧盟委员会高级专家组对人工智能进行了更为细致的定义,即“由人类设计的系统,在给定复杂目标的情况下,通过感知环境、解释收集到的结构化或非结构化数据、根据从这些数据中获得的知识进行推理并决定为实现既定目标而采取的最佳行动(根据预定义参数)来在物理或数字世界中行动。人工智能系统还可以通过分析环境如何受到其先前行为的影响来学习调整其行为”(AIHLEG 2018)。除了有关人工智能定义的现有争议之外,我们可以确定以下对其功能至关重要的要素:通过传感器感知环境;根据感知到的数据进行推理/决策;通过执行器进行驱动。如此构想的人工智能为从医学到军事的不同领域开辟了多种可能性,从而引发了多重伦理问题。简而言之,人工智能和自动化的进步可能使对人员及其活动的监视、监控和跟踪更加普遍,以及信息在世界范围内更快地传播,这带来了许多安全和隐私挑战(Stahl and Wright 2018 )。此外,人工智能在医学、军事和自主武器发展中的潜在促进作用引发了关于不可靠性和问责制的问题(Hammond 2015 ;Hallaq et al. 2017 ;Horowitz 2018 )。此外,人工智能和自动化一起,可能会带来深远的经济和社会变革,对整个劳动力市场产生影响(Aicardi 等人,2018 年)。哪些类型的工作可能受到影响仍存在争议,但人们一致认为,人工智能将改变工作需求以及依赖人类能力和技能的职位的性质(Perisic,2018 年)。它可能会创造新的职位并消除现有的职位(EGE,2018 年),并通过预测分析等方式对传统的招聘和招募实践产生重大影响。在最先进的人工智能研究类型之一:自学习人工智能中,也出现了紧迫的伦理问题。自学习人工智能可以通过强化学习,不需要人类数据、指导或基本规则以外的领域知识(Silver 等人,2017 年)。据其开发人员称,自学习人工智能无需任何先前的专业知识即可“在具有挑战性的领域达到超人的水平”(Silver 等人,2017 年)。迄今为止,这种人工智能已在有限的环境中成功应用,特别是在国际象棋、围棋和扑克等游戏中,所有相关变量都可以预测,即使通过极其复杂的计算。这些系统在现实环境中的应用(例如自动驾驶汽车)提出了尚未解决的具有挑战性的问题,尽管我们不能排除它们的解决只是时间问题的可能性(Sokol 2018)。如果不考虑关注大规模潜在场景(例如超级智能 AI 接管)的“大伦理”问题(Muller 2016),很明显
参考:1。Song,W.,Wang,G.,Chen,L。等。1995。“一种由水稻疾病抗性基因xa21编码的受体激酶样蛋白。”科学。270:1804-1806。2。Beutler,B.,Jiang,Z.,Georgel,P。等。2006。“宿主电阻的遗传分析:通行器样受体信号传导和免疫力。”安努。修订版免疫。24:353-389。3。Ausubel,F。2005。“植物和动物的先天免疫信号通路是否保守?”自然免疫。6(10):973-979。4。Didierlaurent,A.,Simonet,M。和Sirard,J-C。 2005。“先天和获得肠道免疫系统的可塑性。”细胞和分子生命科学。62:1285-1287。5。Stahl,P。和Ezekowitz,R。1998。“甘露糖受体是涉及宿主防御的模式识别受体。” Curr。opin。免疫。10(1):50-55。6。Spurlock,M.,1997年。“在免疫挑战期间的代谢和生长调节:细胞因子功能的概述。” J. Anim。SCI。 75:1773-1783。 7。 Gabler,N。和Spurlock,M.2008。 “将免疫系统与增长和效率的调节整合在一起。” J. Anim。 SCI。 86:E64-E74。 8。 Korver,D。2006。 “消化系统的免疫动力学概述。” J. Appl。 家禽res。 15:123-135。 9。 Klasing,K.2007。 poult。SCI。75:1773-1783。7。Gabler,N。和Spurlock,M.2008。“将免疫系统与增长和效率的调节整合在一起。” J. Anim。SCI。 86:E64-E74。 8。 Korver,D。2006。 “消化系统的免疫动力学概述。” J. Appl。 家禽res。 15:123-135。 9。 Klasing,K.2007。 poult。SCI。86:E64-E74。 8。 Korver,D。2006。 “消化系统的免疫动力学概述。” J. Appl。 家禽res。 15:123-135。 9。 Klasing,K.2007。 poult。86:E64-E74。8。Korver,D。2006。“消化系统的免疫动力学概述。” J. Appl。家禽res。15:123-135。9。Klasing,K.2007。poult。“营养和免疫系统。” br。SCI。 48(5):525-537。 10。 Daskiran,M.,Teeter,R.,Fodge,D。和Hsiao,H.2004。 “对β-d-甘露酶Hemicell™的评估对β-甘露含量不同的饮食中肉鸡性能和能量使用的影响。”家禽科学。 83:662-668。 11。 Poulsen,K。Hemicell对44种经验分析的肉鸡中肠道健康的影响。 文件中的数据。 12。 Vangroenweghe,F.,Poulsen,K。&Thas,O。补充β-甘露酶酶在替代饮食中降低了在仔猪中使用后腹泻和抗生素的使用,并使用额外的大豆粉减少。 PORC Health Manag 7,8(2021)。 https://doi.org/10.1186/s40813-021-00191-5(ref-13331)13。 H.-Y.,Anderson,D.M。,Jin,F.L。和Mathis,G.F。 2004。 “β-甘露酶(Hemicell®)在感染坏死肠炎的肉鸡中的功效。 国际家禽科学论坛,摘要120,南部鸟类疾病会议。 14。 Vangroenweghe,F。&Poulsen,K。2020。 在有挑战性的蛋白质来源的情况下,β-甘露酶酶的Hemicell HT(一种β-甘露酶)的应用恢复了断奶后的仔猪的性能。 文件中的数据。 15。 Elanco试用号Elade140114。 2014。 在德国肉鸡整合中,在商业条件下对Hemicell-L的结果分析。 文件中的数据。 16。 Lee,J。,Bailey,C。和Cartwright,A。 2003。 82:1925-1931。 17。 ©2023 Elanco或其分支机构。SCI。48(5):525-537。10。Daskiran,M.,Teeter,R.,Fodge,D。和Hsiao,H.2004。“对β-d-甘露酶Hemicell™的评估对β-甘露含量不同的饮食中肉鸡性能和能量使用的影响。”家禽科学。83:662-668。11。Poulsen,K。Hemicell对44种经验分析的肉鸡中肠道健康的影响。文件中的数据。12。Vangroenweghe,F.,Poulsen,K。&Thas,O。补充β-甘露酶酶在替代饮食中降低了在仔猪中使用后腹泻和抗生素的使用,并使用额外的大豆粉减少。PORC Health Manag 7,8(2021)。https://doi.org/10.1186/s40813-021-00191-5(ref-13331)13。H.-Y.,Anderson,D.M。,Jin,F.L。和Mathis,G.F。 2004。 “β-甘露酶(Hemicell®)在感染坏死肠炎的肉鸡中的功效。 国际家禽科学论坛,摘要120,南部鸟类疾病会议。 14。 Vangroenweghe,F。&Poulsen,K。2020。 在有挑战性的蛋白质来源的情况下,β-甘露酶酶的Hemicell HT(一种β-甘露酶)的应用恢复了断奶后的仔猪的性能。 文件中的数据。 15。 Elanco试用号Elade140114。 2014。 在德国肉鸡整合中,在商业条件下对Hemicell-L的结果分析。 文件中的数据。 16。 Lee,J。,Bailey,C。和Cartwright,A。 2003。 82:1925-1931。 17。 ©2023 Elanco或其分支机构。H.-Y.,Anderson,D.M。,Jin,F.L。和Mathis,G.F。 2004。“β-甘露酶(Hemicell®)在感染坏死肠炎的肉鸡中的功效。国际家禽科学论坛,摘要120,南部鸟类疾病会议。14。Vangroenweghe,F。&Poulsen,K。2020。在有挑战性的蛋白质来源的情况下,β-甘露酶酶的Hemicell HT(一种β-甘露酶)的应用恢复了断奶后的仔猪的性能。文件中的数据。15。Elanco试用号Elade140114。2014。在德国肉鸡整合中,在商业条件下对Hemicell-L的结果分析。文件中的数据。16。Lee,J。,Bailey,C。和Cartwright,A。 2003。 82:1925-1931。 17。 ©2023 Elanco或其分支机构。Lee,J。,Bailey,C。和Cartwright,A。2003。82:1925-1931。17。©2023 Elanco或其分支机构。“β-甘露酶可以改善饲喂瓜尔菌和船体级分的肉鸡生长抑郁症。”家禽科学。Hemicell Emea Field Experience Elanco UK AH Limited,一楼,表格2,Bartley Way,Bartley Wood商业公园,Hook RG27 9XA。电话:01256 353131电子邮件:elancouk@elanco.com Hemicell,Elanco和对角线徽标是Elanco或其分支机构的商标。准备日期:04/2023 PM--UK-21-0567
全球气候变化对陆地生态系统功能影响巨大,降水模式的波动范围从极端干旱到不适应这些条件的生态系统中的高强度降雨事件。同时,生态系统功能受到生物多样性迅速丧失的威胁(Tilman 等人,2012 年)。气候变化和生物多样性对生态系统功能产生复合影响的可能性凸显了同时考虑这两个因素的必要性。通过更好地了解生物多样性和气候变化对生态系统过程的潜在机制介质,可以更好地预测此类影响。大量研究表明土壤微生物在生态系统功能( Austin 等人, 2014 ; Dubey 等人, 2019 ; Podzikowski 等人, 2024 )和生物多样性维持( Van Der Heijden 等人, 2008 ; Bever 等人, 2015 )中发挥着关键作用,因此很可能成为调节生物多样性和气候变化对生态系统功能的联合影响的候选者。因此,了解土壤微生物组(包括功能不同的微生物群)如何应对气候扰动以及植物多样性和组成的变化至关重要。土壤微生物组已被证明对降水变化高度敏感( Barnard 等人, 2013 ; Engelhardt 等人, 2018 )。研究表明,细菌和真菌(包括真菌病原体(Coulhoun,1973 年;Talley 等人,2002 年;Delavaux 等人,2021 年 a)和丛枝菌根 (AM) 真菌(House and Bever,2018 年)和卵菌(Van West 等人,2003 年;Delavaux 等人,2021 年 a))的丰富度、丰度和组成会随着降水量的变化而变化。虽然细菌和真菌都对降水量的增加作出反应,但研究发现真菌比细菌更能耐受干旱条件(Barnard 等人,2013 年;Engelhardt 等人,2018 年)。同时,一些真菌病原体(例如锈病,Froelich 和 Snow,1986;根腐病 Wyka 等人,2018;Bevacqua 等人,2023)和腐生菌(Delavaux 等人,2021a)被发现在较潮湿的条件下繁殖。此外,陆生卵菌通常是植物病原体,它们在较潮湿的条件下多样性增加(Delavaux 等人,2021a),这可能是它们依赖水的生命周期所预期的(Thines,2018)。因此,这些对降水的不同反应对于微生物组对植物群落的反馈具有重大影响,例如在干旱条件下对 AM 真菌伙伴的依赖增加( Stahl 和 Smith,1984 ; Schultz 等人,2001 ; Auge,2001 ; Marulanda 等人,2003 )以及在潮湿条件下病原体的影响可能更大。因此,确定功能和分类学上不同的土壤微生物群对重大降水变化的相对敏感性,对于理解微生物组驱动的功能如何随着干旱期延长和降雨期加剧而发生变化至关重要。迄今为止,还没有研究测量过微生物功能群对降水实验性改变的广度。土壤微生物组对植物群落组成也高度敏感。植物物种丰富度的提高可以增加微生物多样性(Lamb 等人,2011 年;Burrill 等人,2023 年),因为植物物种的微生物组通常因根系结构(Saleem 等人,2018 年)、根系
ISBN:9786053555964 2017 生物学 John M. Martinko、Kell S. Bender、Daniel H. Buckey、David A. Stahl、Michael T. Madigan 译者:翻译 编辑:Cumhur Çökmüş Palme 出版社 随着学习的发展,我们也在发展。布罗克《微生物生物学》第 14 版是迄今为止最全面的著作,该书内容现代化,完全与时俱进,在尊重微生物学过去的同时又展望未来。三代以来,学生和老师一直依靠布鲁克《微生物生物学》的准确性、权威性、一致性和及时性来学习微生物学的基本原理并进一步增强他们对该领域的兴趣。通过第十四版,学生将受益于本书对前沿研究的重视、对现代分子微生物学的无缝整合和介绍、以及其精美修改的插图。此外,布鲁克的微生物生物学课程首次得到了培生在线作业、辅导和评估系统 ReinforcingMicrobiology 的支持。加入CART 5 322.72 TL 62.02 TL税1 285.30 TL 2 570.61 TL税收1 696.50 TL 1 885.00 25 TL 1 105.00 TL加入购物车中的动物学原理963.00 TL 1 070.00 TL税添加到购物车901.00 TL 1 060.00 TL。一定是安全的。然而,从互联网下载文件时一定要小心。例如,确保您的设备保持最新状态。通过报告此文件的质量来帮助社区!文件质量极佳 (0)0) 下面继续以英文书写文本。 “文件 MD5” 是根据文件内容计算出的哈希值,并且根据文件内容具有合理的唯一性。我们在此索引的所有影子库主要使用 MD5 来识别文件。一个文件可能出现在多个影子库中。有关我们编译的各种数据集的信息,请参阅数据集页面。有关此特定文件的信息,请参阅 JSON 文件。 MainBrock:微生物生物学 Michael T. Madigan、John M. Martinko 您有多喜欢这本书?文件的质量如何?下载书籍进行质量评估下载的文件的质量如何?出版商:Palme Publications turkish, 2012 下载(pdf,13.32 MB) 该文件将发送至您的电子邮件地址。您可能需要等待 1-5 分钟才能收到。转换正在进行中 随着学习的进步,我们也在进步。现代化,布罗克微生物生物学第 14 版是迄今为止最全面的著作,内容完全与时俱进,尊重微生物学的过去,同时又对未来充满期待。三代以来,学生和老师一直依靠布鲁克《微生物生物学》的准确性、权威性、一致性和及时性来学习微生物学的基本原理并进一步增强他们对该领域的兴趣。通过第十四版,学生将受益于本书对前沿研究的重视、对现代分子微生物学的无缝整合和介绍、以及其精美修改的插图。此外,布鲁克的《微生物生物学》首次得到了培生在线作业、培训和评估系统 ReinforcingMicrobiology 的支持。 ISBN / 条形码:9786053555964 商店:出版商 / 品牌:件数:1您将获得的积分:1500 积分页数:1002总销量:15 件运费折扣:免费送货供应时间:最迟到 10 月 24 日星期四
和Y染色体微缺失(YCMS)约有15%至30%的男性不育病例(Hess and Renato de Franca,2008; Leaver,2016),Y染色体微缺失,尤其是遗传学学尤其是遗传学学的15%的严重的寡素蛋白酶和azoospermia and azoospermia(Arumugia)(Arumumia and Arumumia and and and and)。Vogt等。(1996)在1996年,根据它们在Azoospermic雄性中的不同阶段中的角色,在YQ11的三个子区域内划定了76个离散的“微骨骼”位点,将它们在功能上归类为AZFA,AZFB和AZFC区域,并将其分类为AZFC区域,并将其与AZFC区域(每种与男性的雌性精神病相关)。此外,Kent-First等。(1999)后来发现AZFD是位于AZFB和AZFC之间的独特基因结构。不育男性中YCM的检测率表现出显着的地理和种族差异,伊朗的AZF缺失率为24%,在美国为12%,在德国和奥地利为少于2%(Cioppi等人,2021年)。Haiyang Yu等人的研究。 (2023)在1,338名被诊断为Azoospermia或严重的寡素化质体的中国男性中,有9%的AZF缺失,占AZFC缺失为6%,而AZFA缺失约为0.8%。 Y染色体上的AZF区域包含多个关键基因以进行精子发生,而不同区域的微缺失可能会通过影响基因表达和功能而导致低氮杂的植物或Azoospermia。 AZFA区域中的微缺失导致仅Sertoli细胞综合征(SCO),其临床特征是睾丸萎缩和Azoospermia(Liu等,2017)。Haiyang Yu等人的研究。(2023)在1,338名被诊断为Azoospermia或严重的寡素化质体的中国男性中,有9%的AZF缺失,占AZFC缺失为6%,而AZFA缺失约为0.8%。Y染色体上的AZF区域包含多个关键基因以进行精子发生,而不同区域的微缺失可能会通过影响基因表达和功能而导致低氮杂的植物或Azoospermia。AZFA区域中的微缺失导致仅Sertoli细胞综合征(SCO),其临床特征是睾丸萎缩和Azoospermia(Liu等,2017)。作为AZFA区域具有对精子发生必不可少的基因,其缺失意味着即使使用诸如显微解剖睾丸精子提取的过程,也无法获得精子。缺失包含AZFB和AZFC导致Sertoli细胞综合征或精子毒性停滞,而受影响的个体通常会出现Azoospermia(Mahadevaiah等,1998; Yan等,2017)。AZFC缺失构成了最常见的AZF微骨骼类型,约占Y染色体微缺失的60%。近年来,由于其高表型异质性,研究人员专注于AZFC区域内的“部分缺失”,表现为多种程度的精子生成功能障碍:Oligozoospermia和Azooospermia和Azooospermia(Kühnert等人(Kühnert等人,2004年,2004年);然而,由于可能产生正常精子,具有AZFC缺失的个体可能代表了能够使生物后代的YCMS患者的唯一子集。欧洲雄科学院(EAA)和欧洲分子遗传学质量网络(EMQN)推荐SY84和SY86作为首选序列标记的位点(STS),用于评估AZFA缺失,因为它们的缺失高度表明完全表明完整的AZFA缺失(Krausz等,2014)。sts是指具有精确基因组位置的短而单拷贝的DNA序列,可以通过聚合酶链反应(PCR)检测到(Olson等,1989),作为人类基因组中的地标,以确定DNA的取向和指定序列的相对位置。在对AZF区域的研究中,STS被用作检测微缺失的基因座。通过通过PCR检查这些基因座,我们可以确定Y染色体AZF区域中微缺失的状态,这对于诊断男性不孕症非常重要。然而,最近的研究表明,在AZFA地区具有部分缺失的少数男性,包括涉及SY84或SY86的男性,表现出正常的精子发生和生育能力
1. Khan A、Fahl Mar K、Faucett J 等。安慰剂反应的增强是否影响了抗抑郁药临床试验结果?数据来自美国食品药品监督管理局 1987-2013 年。世界精神病学。2017 年;16:181-92。2. Saragoussi D、Chollet J、Bineau S、Chalem Y、Milea D。抗抑郁药在重度抑郁症治疗中的转换模式:一项全科医学研究数据库 (GPRD) 研究。Int J Clin Pr。2012 年;66:1079-87。3. 美国精神病学协会。重度抑郁症患者治疗实践指南。2010 年。4. 英国国家健康与护理卓越研究所。概述 | 成人抑郁症:识别与管理 | 指导 |NICE。NICE 指导。 2018。https://www.nice.org.uk/guidance/cg90。访问日期:2020 年 1 月 20 日。5. Cleare A、Pariante CM、Young AH 等。使用抗抑郁药治疗抑郁症的循证指南:2008 年英国精神药理学协会指南的修订版。《精神药理学杂志》。2015 年;29:459-525。6. Stahl SM。《基本精神药理学:处方指南》。第 7 版。2020 年。7. 英国国家健康与护理卓越研究所。抑郁症。成人抑郁症的治疗和管理。2009 年。8. Relling MV、Klein TE。CPIC:药物基因组学研究网络的临床药理遗传学实施联盟。临床药理学与治疗。 2011;89:464-7。9. Whirl-Carrillo M、McDonagh EM、Hebert JM 等。个性化医疗的药物基因组学知识。临床药理学与治疗学。2012;92:414-7。10. Thorn CF、Klein TE、Altman RB。PharmGKB:药物基因组学知识库。方法分子生物学。2013;1015:311-20。11. FDA 批准的药物。FDA/CDER 资源页面;美国食品药品监督管理局网站。2020 年。https://www.fda.gov/drugs。访问日期:2021 年 10 月 20 日。12. 欧洲药品管理局。网站。2020 年。https:/ema.europa.eu/en。访问日期:2021 年 10 月 20 日。13. Qaseem A、Barry MJ、Kansagara D 等。重度抑郁症成年患者的非药物治疗与药物治疗:美国内科医师学会临床实践指南。《实习医生年鉴》。2016;164:350-359。14. Taliaz D、Spinrad A、Barzilay R 等。使用机器学习和整合的遗传、临床和人口统计数据优化对抗抑郁药物反应的预测。《精神病学翻译》。2021;11:381。15. Rush AJ、Fava M、Wisniewski SR 等。缓解抑郁症的序列治疗替代方案 (STAR*D):基本原理和设计。《临床对照试验》。2004;25:119-142。 16. Fava M、Rush AJ、Trivedi MH 等。缓解抑郁症的序列治疗替代方案 (STAR*D) 研究的背景和原理。《北美精神病学与临床》2003;26:457-94。17. Mrazek DA、Biernacka JM、McAlpine DE 等。抑郁症的治疗结果:药物基因组学研究网络抗抑郁药物药物基因组学研究。《临床精神药理学杂志》2014 年 6 月;34(3):313-7。18. Bertrand Saudreau、Amit Spinrad、Redwan Maatoug 等。个性化抗抑郁药处方对重度抑郁症患者基于遗传学、社会人口统计学和临床数据的影响:一项临床试点研究。药理学和药物基因组学 2022;4(1): 122-129。doi: 10.31488/jpp.105。
Anddenas,Mads和Chiu,Iris H.-Y.,金融监管中的财务稳定与法律融合,38 E.L.修订版 (2013),335–359; Avgouleas,Emilios,作为监管技术的披露未来是什么? 行为决策理论和全球金融危机的教训,载于:麦克尼尔,伊恩和奥布莱恩,贾斯汀(编辑。 ),《金融监管的未来》(2010年),第205-225页; Bachmann,Gregor,《资本市场法》中平等待遇的原则,170 Zhr(2006),144-177; Bauerschmidt,Jonathan,财务稳定性作为银行联盟的目标,17 ECFR(2020),155-183; Brinckmann,Hendrik,《资本市场法财务报告》(2009年); Brüggemeier,Alexander F.P.,《欧洲资本市场法中的统一概念》(2018年); Bueren,Eckart,欧盟分类法可持续系统,(WM 2020),1611–1619,1659–1663; Bumke,基督徒,以资本市场的例子为例,载于:Hopt,Klaus J.等。 (ed。 ),欧洲内部市场的资本市场立法(2008年),第107-141页;咖啡,约翰·C·萨尔(John C. (2012); Fama,Eugene,有效的资本市场:理论和经验工作的评论,25 J. Fin (1970),383–417; Franke,Günter和Hax,Herbert,Finance and Capital Market Finance,第6版。 (2009);吉尔森(Gilson),罗纳德(Ronald J. (1984),549–644; Habersack,Mathias,市场滥用权和Aktuit法律冲突与临时宣传义务有关Anddenas,Mads和Chiu,Iris H.-Y.,金融监管中的财务稳定与法律融合,38 E.L.修订版(2013),335–359; Avgouleas,Emilios,作为监管技术的披露未来是什么?行为决策理论和全球金融危机的教训,载于:麦克尼尔,伊恩和奥布莱恩,贾斯汀(编辑。),《金融监管的未来》(2010年),第205-225页; Bachmann,Gregor,《资本市场法》中平等待遇的原则,170 Zhr(2006),144-177; Bauerschmidt,Jonathan,财务稳定性作为银行联盟的目标,17 ECFR(2020),155-183; Brinckmann,Hendrik,《资本市场法财务报告》(2009年); Brüggemeier,Alexander F.P.,《欧洲资本市场法中的统一概念》(2018年); Bueren,Eckart,欧盟分类法可持续系统,(WM 2020),1611–1619,1659–1663; Bumke,基督徒,以资本市场的例子为例,载于:Hopt,Klaus J.等。(ed。),欧洲内部市场的资本市场立法(2008年),第107-141页;咖啡,约翰·C·萨尔(John C.(2012); Fama,Eugene,有效的资本市场:理论和经验工作的评论,25 J. Fin(1970),383–417; Franke,Günter和Hax,Herbert,Finance and Capital Market Finance,第6版。(2009);吉尔森(Gilson),罗纳德(Ronald J.(1984),549–644; Habersack,Mathias,市场滥用权和Aktuit法律冲突与临时宣传义务有关),纪念出版物25年WPHG(2019),217–235;海因兹(Heinze),斯蒂芬(Stephan),欧洲资本市场法 - 主要市场法(1999年);地狱,帕特里克·A。,披露非财务信息(2020); Hopt,Klaus J.,《银行法律的资本保护》(1996年); Ipsen,Nils和Röh,Lars,神秘分类法,Zip(2020),2001 - 2010年; Klingenbrunn,Daniel,产品禁令,以确保金融市场稳定性(2018年); Langevoort,Donald C.,《欧盟结构证券监管:美国经验的经验教训》,载于:Ferrarini,Guido和Wymersch,Eddy(编辑。 div>),欧洲的投资者保护 - 企业制定,Mifid and Beyond(2006),485-505;损失,路易斯和塞利格曼,乔尔,证券法规,第一卷,第三版。(1998); Lo,Andrew W.,自适应市场假设,30 JPM(2004),15-29;卢曼(Luhmann),尼克拉斯(Niklas),信任:降低社会复杂性的机制,第五版。(2014);马蒂格·丹尼尔(Mattig Daniel),《欧洲资本市场法的平等待遇》(2019年); Mehringer,Christoph,《一般资本法》原则(2007年);注释,汉诺,公司平台:披露公司数据作为市场参与的关联(2009年);米尔格罗姆(Milgrom),保罗(Paul),好消息和坏消息:代表定理和应用,贝尔·J·Econ 12。; ZBB(2019),71-80; Tounopoulos,Vassilios,股票公司及其前景的透明度,载于:Tounstopoulos,Vassilios和Veil,Rüdiger(Eds。),欧洲股票公司的透明度(2019年),353–363;面纱,吕迪格(Rüdiger(1981),380–391; Mülbert,Peter O.,投资者保护与金融市场法规 - 基础,177 ZHR(2013),160-211; Mülbert,Peter O.和Sajnovits,Alexander,Trust and Financial Market Law,2 ZFPW(2016),1-51; Schinasi,Garry J.,《保护财务稳定:理论与实践》(2005年); Stahl,Carolin,资本市场上的信息超负荷(2013年);斯塔克(Jürgen),国际金融体系(2004年); Stumpp,Maximilian,欧盟可持续金融产品分类法 - 欧洲可持续金融的可靠基础?