...................................................................122 图 8-24:水生生物多样性当地研究区域 .............................................................. 124 图 8-25:按第四纪集水区 B11B 定义的水生生物多样性区域研究区域 ............................................................................................. 124 图 8-26:相对水生生物多样性主题敏感性地图(环境筛选工具,2022 年) ............................................................................. 125 图 8-27:MBSP 淡水评估(MTPA,2011 年) ............................................................................. 126 图 8-28:与 FEPA 子集水区相关的研究区域 ............................................................................. 127 图 8-29:与 NFEPA 湿地相关的拟议开发项目(2011 年)...................................................................................... 127 图 8-30:与 NWM5 湿地相关的拟议开发项目(2019 年)............................................................................. 128 图 8-31:河谷底部湿地(上游和下游)概览......................................................................................... 129 图 8-32:在湿地季节性区域 50-60 厘米处采集的土壤样本......................................................................... 129 图 8-33:A)SEEP 1 湿地概览和大坝处的积水,B)在 SEEP 湿地永久区域采集的土壤样本表明灰坝的土壤污染迹象............................................................................. 130 图 8-34:概览SEEP 湿地:上游和下游视图..................................................................................... 130 图 8-35:在湿地永久区采集的土壤样本..................................................................... 131 图 8-36:湿地划定和分类......................................................................................................... 132
...................................................................122 图 8-24:水生生物多样性当地研究区域 .............................................................. 124 图 8-25:按第四纪集水区 B11B 定义的水生生物多样性区域研究区域 ............................................................................................. 124 图 8-26:相对水生生物多样性主题敏感性地图(环境筛选工具,2022 年) ............................................................................. 125 图 8-27:MBSP 淡水评估(MTPA,2011 年) ............................................................................. 126 图 8-28:与 FEPA 子集水区相关的研究区域 ............................................................................. 127 图 8-29:与 NFEPA 湿地相关的拟议开发项目(2011 年)...................................................................................... 127 图 8-30:与 NWM5 湿地相关的拟议开发项目(2019 年)............................................................................. 128 图 8-31:河谷底部湿地(上游和下游)概览......................................................................................... 129 图 8-32:在湿地季节性区域 50-60 厘米处采集的土壤样本......................................................................... 129 图 8-33:A)SEEP 1 湿地概览和大坝处的积水,B)在 SEEP 湿地永久区域采集的土壤样本表明灰坝的土壤污染迹象............................................................................. 130 图 8-34:概览SEEP 湿地:上游和下游视图..................................................................................... 130 图 8-35:在湿地永久区采集的土壤样本..................................................................... 131 图 8-36:湿地划定和分类......................................................................................................... 132
这是一项集体专利豁免,豁免政府对国内大型企业在美国能源部 (DOE) 科学、创新和基础设施财政援助协议过程中或根据该协议构想或制造的发明的所有权。1,2,3 此类专利豁免授权知情的 DOE 专利顾问在与资助办公室或计划磋商后,在任何科学、创新和基础设施财政援助协议中使用所附的国内大型企业专利权条款。专利权条款允许国内大型企业选择保留其根据协议所做的发明的所有权,但须遵守各种条款和条件以及政府保留权利。如下所详述,根据 DOE 专利豁免规定,集体专利豁免是适当的,将有助于实施 DOE 对美国制造业的政策,并减轻 DOE 和受助者的行政负担。
MURPHY 法官代表法院发表意见,BLOOMEKATZ 法官表示赞同,MOORE 法官部分赞同并同意判决。MOORE 法官(第 14-15 页)发表了单独的赞同意见。
1.1.2 国家电网在一天中和一年中的不同时间都会经历巨大的需求波动。在高需求期间,国家电网旨在增加供应以保持 20% 的供应裕度,这对于尽可能消除电力短缺和停电的风险至关重要,因为当需求出现意外变化或突然断电时,电力短缺和停电的风险是至关重要的。从历史上看,传统发电站的运行是有一定把握的。然而,随着英国转向更加环保的可持续能源供应系统,随着可再生能源的增加,电力供应波动的风险会增加,这取决于当时的天气条件,因此对能源存储设施的需求也会增加,以便尽量使供应与需求相匹配。此类存储设施包括电池储能系统 (BESS)。
1在摩尔诉哈里曼市案中,我们认为,要陈述1983年针对州政府官员的索赔,索赔人不必明确要求如果“诉讼程序”向官员通知他以这种身份被起诉,则该官员以“个人身份”行事。272 F.3d 769,772–73(6th Cir。2001)(en banc)。但是,正如我们在摩尔所认识的那样,在这种情况下宣布的诉状规则并未满足第十一修正案所规定的管辖权要求,因为在摩尔起诉的警察是“市政当局的雇员,第十一修正案不适用于市政府。” ID。在773 n.2。在第十一修正案中的主权免疫与基于幼年的国家实体寻求的禁令救济有关。在这种情况下,索赔人必须明确声称该索赔是针对其正式身份的国家官员提出的。
三阴性乳腺癌 (TNBC) 因其易转移和预后不良而带来了巨大的临床挑战。TNBC 通过各种机制逃避人体免疫系统的识别和攻击,包括 Janus 激酶 2 (JAK2)/信号转导和转录激活因子 3 (STAT3) 信号通路。该通路的特点是在许多实体瘤中活性增强,在特定的 TNBC 亚型中表现出明显的激活。因此,针对 JAK2/STAT3 信号通路成为一种有前途的精准 TNBC 治疗策略。JAK2/STAT3 通路的信号转导级联主要涉及受体酪氨酸激酶、酪氨酸激酶 JAK2 和转录因子 STAT3。正在进行的临床前研究和临床研究正在积极研究该通路作为 TNBC 治疗的潜在治疗靶点。本文全面回顾了使用小分子化合物靶向 JAK2/STAT3 信号通路治疗 TNBC 的临床前和临床研究。本综述探讨了 JAK2/STAT3 通路在 TNBC 治疗中的作用,评估了活性抑制剂和靶向蛋白水解的嵌合体在 TNBC 治疗中的益处和局限性。目的是促进有效靶向 TNBC 的新型小分子化合物的开发。最终,这项工作旨在为提高 TNBC 患者的治疗效果做出贡献。