AD52050B 是一款具有可调功率限制功能的高效立体声 D 类音频放大器。扬声器驱动器的工作电源电压为 8V~14.4V。它可以在 12V 电源电压下向 4 扬声器提供 15W/CH 输出功率,且 THD+N 低于 10%,播放音乐时无需外部散热器。
AD52060 是一款具有可调功率限制功能的高效立体声 D 类音频放大器。扬声器驱动器的工作电源电压为 8V~26V。它可以在 24V 电源电压下向 8 扬声器提供 20W/CH 输出功率,且 THD+N 小于 1%,播放音乐时无需外部散热器。
a 武汉大学遥感信息工程学院,武汉 430079,中国 b 中山大学地理空间信息工程与科学学院,珠海 519082,中国 * 通讯作者。1 两位作者对本文稿的贡献相同。电子邮件:zhangyj@whu.edu.cn (Y. Zhang)、zousiyuan3s@whu.edu.cn (S. Zou)、liuxy0319@whu.edu.cn (X. Liu)、huangx358@mail.sysu.edu.cn (X. Huang)、yi.wan@whu.edu.cn (Y. Wan)、yaoyongxiang@whu.edu.cn (Y. Yao)
在过去的几年中,深入的学习有了立体声匹配的精度,但恢复急剧的界限和高分辨率产出有效仍然充满挑战。在本文中,我们提出了立体声混合物网络(SMD-NETS),这是一个简单而有效的学习框架,与宽阔的2D和3D体系结构兼容,可改善这两个问题。特别是,我们利用双峰混合物密度作为输出代表,并表明这允许几乎不连续的尖锐而精确的差异估计,同时明确地构建了观测中固有的不确定性。此外,我们将差异估计作为图像域中的一个连续问题,从而使我们的模型以任意空间精度查询差异。我们对新的高分辨率和高度逼真的立体声数据集进行了全面的实验,该数据集由8MPX分辨率以及现实世界立体声数据集组成。我们的实验表明,在物体边界附近的深度准确性以及对标准GPU上高分辨率差异图的预测。,我们通过提高各种立体主杆的性能来证明我们技术的灵活性。
摘要 - 三维重建技术是计算机视觉中的基本问题。光度法立体声从不同的阴影提示中恢复了3D对象的表面正态,其能力占据了其生成正常状态的能力。近年来,由于其在非兰伯特表面上的强大拟合能力,基于深度学习的光度立体观点能够改善一般非兰伯特表面的表面正态估计。这些最先进的方法通常直接从高维特征中回归正常的表面,而无需探索嵌入式结构信息。这导致功能中可用信息的利用不足。因此,在本文中,我们为基于学习的光度立体声效率提出了一个基于效率的歧管框架,该框架可以更好地映射高维特征空间与低维歧管。广泛的实验表明,我们的方法通过低维歧管学习,实现了更准确的表面正态估计,在挑战勤奋的基准数据集方面表现优于其他最先进的方法。
a 武汉大学遥感信息工程学院,武汉 430079,中国 b 中山大学地理空间信息工程与科学学院,珠海 519082,中国 * 通讯作者。1 两位作者对本文稿的贡献相同。电子邮件:zhangyj@whu.edu.cn (Y. Zhang)、zousiyuan3s@whu.edu.cn (S. Zou)、liuxy0319@whu.edu.cn (X. Liu)、huangx358@mail.sysu.edu.cn (X. Huang)、yi.wan@whu.edu.cn (Y. Wan)、yaoyongxiang@whu.edu.cn (Y. Yao)
• 如果选择不需要晶体振荡器的应用模式,则不能省略晶体振荡器。原因是当 SPDIF 输入信号被移除时,内插器会切换到晶体时钟。此开关可防止噪声整形器噪声在 PLL 频率逐渐降低时进入音频带内。
许多人为这些指导方针做出了贡献。特别感谢 Charles salter Associates 的 David schwind 提供的许多声学建议。cohen Acoustics 的 Elizabeth Cohen、JBL 的 John Eargle 以及 USC 和 Lucasfilm 的 Tomlinson Holman 为这个正在进行的项目做出了重大贡献。在杜比实验室内部,有许多知情和不知情的贡献者:特别是 Tom Bruchs、Sam Chavez、Louis Fielder、John Iles、Lonny Jennings、Scott Robinson、Charles Seagrave 和 David Watts。
摘要:建筑物的三维地理参考数据对于地籍、城市和区域规划、环境问题、考古学、建筑、旅游和能源等许多应用都非常重要。现有数据库的获取和更新非常耗时,需要专门的设备和对原始数据的大量后期处理。在本研究中,我们提出了一种基于立体摄像机的城市区域数据系统,用于重建 3D 空间并随后与有限的大地测量进行匹配。所提出的立体系统以及用于两个摄像机中的边缘检测和特征点匹配的图像处理算法允许在摄像机坐标中重建 3D 场景。与可用的大地测量数据的匹配允许在世界坐标上映射整个场景并重建真实世界的距离和角度测量。
TA2020-020 是一款功率(高电流)放大器,工作在相对较高的开关频率下。放大器的输出在驱动高电流的同时,以高速在电源电压和地之间切换。该高频数字信号通过 LC 低通滤波器,以恢复放大的音频信号。由于放大器必须驱动电感 LC 输出滤波器和扬声器负载,因此放大器输出可能被输出电感中的能量拉高至电源电压以上和地以下。为避免 TA2020-020 受到可能造成损坏的电压应力,良好的印刷电路板布局至关重要。建议在所有应用中使用 Tripath 的布局和应用电路,并且只有在仔细分析任何更改的影响后才可以偏离。下图是 Tripath TA2020-020 评估板。板上最关键的组件是电源去耦电容。电容 C674 和 C451 必须放置在引脚 22 (VDD2) 和 19 (PGND2) 的旁边,如图所示。同样,电容 C673 和 C451B 必须放置在引脚 25 (VDD1) 和 28 (PGND1) 的旁边,如图所示。这些电源去耦电容不仅有助于抑制电源噪声,更重要的是,它们可以吸收由放大器输出过冲引起的 VDD 引脚上的电压尖峰。类似地,肖特基二极管 D1、D2、D3 和 D4 可最大程度降低相对于 VDD 的过冲,肖特基二极管 D702、D703、D704 和 D728 可最大程度降低相对于电源接地的下冲。为了获得最大效果,这些二极管必须位于输出引脚附近,并返回到各自的 VDD 或 PGND 引脚。二极管 D1、D2、D3 和 D4 仅适用于 VDD>13.5V 的应用。在高电流开关事件(例如短路输出或在高电平下驱动低阻抗)期间,输出电感器反激也可能导致电压过冲。如果这些电容器和二极管距离引脚不够近,则可能会对部件造成电气过应力,从而可能导致 TA2020-020 永久损坏。输出电感器 L389、L390、L398 和 L399 应放置在靠近 TA2020-020 的位置,而不会影响靠近放置的电源去耦电容器和二极管的位置。将输出电感器放置在靠近 TA2020-020 输出引脚的位置是为了减少开关输出的走线长度。遵循此准则将有助于减少辐射发射。