结构化威胁信息表达式(Stix)是一种开源语言和序列化格式,用于交换CTI。指标,例如文件哈希,域,URL,HTTP请求和IP地址,是要共享威胁阻塞的重要输出。但是,有效的行动取决于其他智能,例如确定性评分和入侵集相关性。stix 2.1定义18个stix域对象,包括攻击模式,行动过程,威胁参与者,地理位置位置和恶意软件信息。它还引入了概念,例如置信等级和关系,这些概念可帮助实体在威胁智能平台收集的大量数据中确定噪声中的信号。您可以在AWS环境中检测,分析和分享有关威胁的细节。有关更多信息,请参见本指南中的预防和侦探安全控制。
1 Istituto Ricerche Solari Locarno(IRSOL),通过Patocchi 57 - Prato Pernice,6605,6605瑞士Locarno-Monti,瑞士2数据科学研究所(I4DS),用于Solar Orar Orbiter Group的Stix Stix,Solar Orbiter Group,Applied Sciences Northwesterions Northwestertution intern switzer switzerland(Fhitzer),Switzer Land,Switzer finders,5210,5211和天体物理学(IPA),太阳天体物理学集团,瑞士联邦技术研究所,苏黎世(Ethz),瑞士8039,瑞士苏黎世,电子邮件:andrea-battaglia@ethz.ch.c.ch 4 4理论天文学与宇宙学中心,计算机科学学院(苏黎世),苏黎世苏格里奇大学,苏格里奇大学,冬季505. 1905.斯德哥尔摩大学太阳能物理研究所,10691斯德哥尔摩,瑞典6 Wave Engineering实验室,ÉcolePolytechniquefédéraledeLausanne(EPFL),瑞士1015,瑞士洛桑7 Leibniz-institutfürSonnenphysik(Kis)
太空 ISAC 运营着一个监测中心,用于监测和向全球太空界报告所有威胁和危险信息。监测中心致力于分析、验证和融合来自不同来源的信息,以追踪对手在地面和太空中的活动。它通过从公开信息、政府合作伙伴共享的信息和成员提交的信息中提取和关联数据来实现这一目标。监测中心使用一组行业采用的框架来关联信息,特别是 MITRE ATT&CK、太空攻击研究与战术分析 (SPARTA) 和 STIX。
峡谷顶镇中心:Ralphs、Coffiee Roasters、Crest Cafe、Rite Aid、Subway、美国银行、Downey Savings、Provident Savings、Hallmark、Donuts、Blockbuster Video、UPS 商店、裁缝店、美黑沙龙、书店、美发美甲沙龙、日间水疗中心、宠物店、美容用品店、干洗店、珠宝店、手工洗车店、Canyon Crest Travel、Don's Lock & Key、Ritz Camera、花店、A&W/KFC、Romano's Italian Restaurant、42nd Street Bagel Cafe、Little Emperor、Papi's Tacos、Pick Up Stix、Cold Stone Creamery、星巴克
该文件由文件末尾列出的人工智能高级专家组 (AI HLEG) 撰写。他们支持该文件的大方向,尽管他们不一定同意其中的每一条陈述。这是人工智能 HLEG 的第四个交付成果,在此之前,该小组于 2019 年 6 月 26 日发布了《可信人工智能政策和投资建议》。人工智能高级专家组是欧盟委员会于 2018 年 6 月成立的独立专家组。联系人 Charlotte Stix - 人工智能 HLEG 协调员电子邮件 CNECT-HLG-AI@ec.europa.eu 欧盟委员会 B-1049 布鲁塞尔文件于 2020 年 7 月 23 日公布。书籍:ISBN 978-92-76-20631-6 doi:10.2759/943666 KK-02-20-527-EN-C PDF:ISBN 978-92-76-20630-9 doi:10.2759/733662 KK-02-20-527-EN-N
1 Istituto Ricerche Solari colarno(IRSOL),通过Patocchi 57 - Prato Pernice,6605,瑞士6605 Locarno-Monti,瑞士:Andrea-battaglia@ethz.chethz.ch.ch.ch.ch.ch.ch 2 5210 Windisch,瑞士3 3粒子物理与天体物理学研究所(IPA),太阳天体物理学集团,瑞士联邦苏黎世联邦技术研究所(ETHZ)(ETHZ),瑞士8039,瑞士4号,瑞士4号,理论上天文学和化妆师学中心,计算机科学研究所(ICS)斯德哥尔摩大学太阳能物理研究所,10691斯德哥尔摩,瑞典6 Wave Engineering实验室,ÉcolePolytechniquefédéraledeLausanne(EPFL),瑞士1015,瑞士洛桑7 Leibniz-institutfürSonnenphysik(Kis)
系统安全隐私OS,VM,容器,云宠物,匿名技术网络:SDN,NFV,SD-WAN去识别攻击IoT,RFID,SCADA系统监视和审查沟通协议的推理推理,相关性,相关性IDS IDS,IPS,IPS,IPS,SIEM,SIEM,SIEM,SIEM,XDR,XDR,BOCKCHAIN HOYERENICIT,ETTECTERTINS等级,botoctnentiment,botoctnentimention等,等级,botoctnentiment,botoctnentimention等, scalability Authentication, MFA Smart contracts, concurrency Authorization model/policy DIDs, NFTs, CBDCs, AML PKI & Trust management Security in AI/ML Information flow control Adversarial learning/inputs Application Security Prompt injection, RLHF strategies Vulnerabilities, DevSecOps Model stealing, poisoning API security, WAF, OWASP Emerging Tech/Standards Static/Binary analysis, Zero trust ChatGPT, LaMDA, Dall-E 2, etc Malware, Ransomware, APTs Security-by-design, SBOM Hardware Security Privacy-by-design, STIX/TAXII Remote attestation, PUFs S&P Use Cases Trojans, Backdoors, FPGA e-voting, e-gov, smart cities TEE, TRNG, 2FA, payment wallets COVID-19 contact tracing
Miles Brundage 1† , Shahar Avin 3,2† , Jasmine Wang 4,29†‡ , Haydn Belfield 3,2† , Gretchen Krueger 1† , Gillian Hadfield 1,5,30 , Heidy Khlaaf 6 , Helen Runing , 7 th Fong 9 , Tegan Maharaj 4.28 , Pang Wei Koh 10 , Sara Hooker 11 , Jade Leung 12 , Andrew Trask 9 , Emma Bluemke 9 , Jonathan Lebensold 4.29 , Cullen O'Keefe 1 , Mark Koren 13 , Thé Ryff 14 , B. B. B. roglu 16 , Federica Carugati 17 , Jack Clark 1 , Peter Eckersley 7 , Sarah de Haas 18 , Maritza Johnson 18 , Ben Laurie 18 , Alex Ingerman 18 , Igor Krawczuk 19 , Amanda Askell 1 , Rosario Cammarota , Andrew Krueger 21 , David Kruger 27 lotte Stix 22 , Peter Henderson 10 , Logan Graham 9 , Carina Prunkl 12 , Bianca Martin 1 , Elizabeth Seger 16 , Noa Zilberman 9 , Seán Ó hÉigeartaigh 2,3 , Frens Kroeger 23 , Girish Sastry 1 , Rebecca Karian , 16 , Brian Well 12.7 , Elizabeth Barnes 1 , Allan Dafoe 12.9 , Paul Scharre 25 , Ariel Herbert-Voss 1 , Martijn Rasser 25 , Shagun Sodhani 4.27 , Carrick Flynn 8 , Thomas Krendl Gilbert 26 , Lisa Dyer 7 , Khan Khan , 27 us Anderljung 12
1. 简介 等离子体动力学建模通常涉及在精细网格上使用经典场进行操作。这需要处理大量数据,尤其是在动力学模型中,而动力学模型以计算成本高昂而闻名。量子计算 (QC) 有可能通过利用量子叠加和纠缠显著加快动力学模拟速度(参见 Nielsen & Chuang 2010 )。然而,只有当模拟等离子体动力学的量子电路深度与系统大小(网格单元数)成有利的(多对数)比例时,量子加速才有可能。实现这种有效的编码具有挑战性,并且对于大多数具有实际意义的等离子体系统来说仍然是一个悬而未决的问题。在这里,我们探讨了一种有效的量子算法的可能性,用于模拟 Vlasov 等离子体中的线性振荡和波(参见 Stix 1992 )。该领域的先前研究主要集中在初始值问题中对空间单色波或保守波进行建模(参见 Engel、Smith 和 Parker 2019;Ameri 等人 2023;Toyoizumi、Yamamoto 和 Hoshino 2023)。然而,典型的实际应用(例如,对于磁约束聚变)需要对非均匀耗散波进行建模