目的 2018 年 6 月 18 日,白宫发布了空间政策指令 3 (SPD-3),即国家空间交通管理政策。SPD-3 的首要目标是推进空间态势感知 (SSA) 1 和空间交通管理 (STM) 科学技术。SPD-3 指出:“美国应继续参与并推动科技 (S&T) 研究与开发,以支持 SSA 和 STM 的实际应用。这些活动包括……推进关键 SSA 输入的科技发展,例如提高 SSA 能力所必需的观测数据、算法和模型,以及开发新硬件和软件来支持数据处理和观测。” 为了响应 SPD-3,国家空间委员会的用户咨询小组 (UAG) 技术和创新小组委员会一直在咨询多位政府和行业专家,研究有关 SSA 数据的技术问题。美国政府 (USG) 的许多利益相关者都与 SSA 数据有关,包括国防部 (DoD)、情报界 (IC)、美国国家航空航天局 (NASA)、商务部 (DOC)、交通部和国务院。持续观察和跟踪太空物体位置(简称 SSA)的能力对于轨道碎片跟踪和/或清除、出于国内监管目的监控太空安全操作以及太空领域的国际安全和透明度等关键能力而言绝对至关重要。需要采取全政府方法来应对这些挑战。本文件总结了 UAG 的两项关键建议和几项观察结果。
摘要:与传统的湿化学合成技术相比,超高真空条件下有机网络的表面合成几乎没有控制参数。分子沉积速率和基底温度通常是唯一需要动态调整的合成变量。本文我们证明,无需专用源,仅依靠回填氢气和离子规细丝即可创造和控制真空环境中的还原条件,并且可以显著影响用于合成二维共价有机骨架(2D COF)的类 Ullmann 表面反应。使用三溴二甲基亚甲基桥连三苯胺 [(Br 3 )DTPA] 作为单体前体,我们发现原子氢 (H • ) 会严重阻碍芳基 − 芳基键的形成,我们怀疑该反应可能是限制通过表面合成产生的 2D COF 最终尺寸的一个因素。相反,我们表明,控制相对单体和氢通量可用于生产大型自组装单体、二聚体或大环六聚体岛,这些单体、二聚体或大环六聚体本身就很有趣。从单一前体表面合成低聚物可避免湿化学合成时间长和沉积源多的潜在挑战。使用扫描隧道显微镜和光谱 (STM/STS),我们表明,通过此低聚物序列的电子状态变化提供了对 2D COF(在没有原子氢的情况下合成)的深刻见解,这是单体电子结构演变的终点。关键词:扫描隧道显微镜 (STM)、共价有机骨架 (COF)、三角烯、异三角烯、DTPA、自组装单层 (SAM)
空间交通管理和协调 (STM/C)、应急管理 (EM)、研究以及全球导航卫星系统 (GNSS) 的应用和用户。所确定和采访的部门在国家安全、经济和社会中发挥着重要作用。SWAG 制定了一套可以针对所有部门提出的通用问题和一套针对特定部门的问题。对于大多数部门,焦点小组用于收集调查信息。GNSS 部门规模庞大且种类繁多,因此信息将在 2 年或更长时间内通过在线调查和焦点小组收集。GNSS 部门调查正在进行中,结果未在随附报告中呈现。
氮化钪作为光电人工突触装置的网关 III-氮化物半导体 Dheemahi Rao 1,2 和 Bivas Saha 1,2,3 1 材料化学和物理部,贾瓦哈拉尔尼赫鲁高级科学研究中心,班加罗尔 560064,印度。 2 国际材料科学中心,贾瓦哈拉尔尼赫鲁高级科学研究中心,班加罗尔 560064,印度。 3 先进材料学院,贾瓦哈拉尔尼赫鲁高级科学研究中心,班加罗尔 560064,印度。 基于冯诺依曼架构的传统计算受到存储和处理单元之间数据传输时间和能耗的限制。冯诺依曼架构在解决非结构化、概率和实时问题方面也效率低下。为了应对这些挑战,需要一种新的受大脑启发的神经形态计算架构。由于没有电阻电容 (RC) 延迟、高带宽和低功耗,光电人工突触装置极具吸引力。然而,稳定、可扩展且与互补金属氧化物半导体 (CMOS) 兼容的突触尚未得到证实。在这项工作中,未掺杂和掺杂镁的氮化钪 (ScN) 的光电导持久性等同于负责记忆和学习的生物突触的抑制性和兴奋性突触可塑性。展示了生物突触的主要功能,如短期记忆 (STM)、长期记忆 (LTM)、从 STM 到 LTM 的转换、学习和遗忘、频率选择性光学滤波、频率依赖性增强和抑制、赫布学习和逻辑门操作。
图 1. 在具有稀释 Cs 吸附原子的 CsV 3 Sb 5 的 Sb 表面构建 Cr-Cs 双原子转子。 (a) 双原子转子形成示意图。 Cr/Fe 原子(用黄色球标记)作为单个原子分布并被 Cs 原子(用红色球标记)捕获,从而在 kagome 超导体 CsV 3 Sb 5 的 Sb 表面形成双原子转子。 (b) STM 图像显示具有稀释 Cs 原子的 CsV 3 Sb 5 晶体的 Sb 表面。 Cr-Cs 双原子转子用红色虚线圆圈突出显示(V s =-500 mV,I t =3 nA)。 (c) - (d) 尖端诱导 Cr-Cs 转子分离为 Cr 原子和 Cs 原子。分离前,Cr原子围绕Cs原子旋转,形成具有不稳定环带的Cr-Cs转子(c)。分离后,Cs和Cr原子的形貌清晰可见(d)。V s =-500 mV,I t =3 nA。(e),左:(c)中的旋转速率图ω(r),显示Cr原子沿圆形轨道绕Cs旋转(V =-600 mV,I =0.5 nA)。右:(c)中Cr-Cs转子环带位置(红十字标记)测得的I-t谱,显示出具有几个离散值的阶梯状特征(V =-250 mV,I =0.9 nA)。(f),CsV 3 Sb 5 的Sb表面Cr-Cs双原子转子的原子分辨STM形貌。图像中叠加了原子模型和 Sb 蜂窝晶格(白色虚线六边形),显示 Cr 原子围绕 Cs 吸附原子旋转(V s =-500 mV,I t =3 nA)。
政府和商业客户推动收入同比增长超过 100% 加利福尼亚州门洛帕克,2024 年 8 月 6 日 — LeoLabs 是领先的集成解决方案提供商,可持续监测太空活动以揭示安全威胁,今天宣布它在 2024 年上半年赢得了超过 2000 万美元的合同。这一重要里程碑推动了收入同比增长超过 100%,并凸显了该公司在商业空间领域感知 (SDA) 和空间交通管理 (STM) 市场中的快速崛起。2024 年上半年,该公司签订了新的合同,以支持不断扩大的全球客户群中的 SDA 和 STM 任务。其中包括美国太空军、美国商务部以及几个未具名的美国和国际政府客户。该公司很自豪目前为八个国家提供支持,包括美国主要盟友和合作伙伴的太空司令部和民用太空机构,并受到拥有 75% 低地球轨道 (LEO) 运行卫星的商业太空运营商的信任。LeoLabs 为美国太空司令部的联合商业行动小组和几个美国盟友提供对低地球轨道 (LEO) 中高关注物体的持续监测,并支持 NOAA 的空间商务办公室推进其美国空间交通协调系统 (TraCSS)。该公司还通过第二阶段小企业创新研究奖为美国空军研究实验室开发下一代雷达技术,旨在加强对非合作发射、较小的轨道碎片和极低地球轨道物体的跟踪。“LeoLabs 已成为行业领导者,”3 月加入公司担任首席执行官的 Tony Frazier 表示。“我们在 2024 年上半年经历的强劲需求反映了太空中新出现的威胁,这些威胁需要我们独特的能力和专业知识。”我们致力于成为美国、盟国和商业航天器运营商的重要任务合作伙伴,并将继续投资于新的能力,帮助我们的客户应对当前和未来的威胁。” 在不断扩大规模的同时,公司专注于开发几个关键市场。这包括支持美国太空司令部确定的 41 个国家的 SDA 任务,这些国家是其“合作伙伴取胜”战略的关键,并应用 LeoLabs 的 STM 能力来支持全球民用太空任务。LeoLabs 还对其下一代雷达技术表现出浓厚的兴趣,以承担美国和盟国合作伙伴的新兴任务。 LeoLabs 成立于 2016 年,已扩大业务规模,以应对全球太空经济的加速发展。2019 年,在近地轨道上运行的卫星不到 900 颗。如今,有超过 9,000 颗卫星和 13,000 块大于 10 厘米的碎片。预测表明,到 2024 年底,运行卫星的数量可能超过 12,000 颗,到 2030 年将超过 70,000 颗。轨道拥堵和太空对抗活动的交织导致了对 LeoLabs 能力的空前需求。
Menlo Park,美国加利福尼亚,2021年10月19日-Leolabs,Inc。,是世界领先的空间领域知名度(SDA)和空间交通管理(STM)服务(STM)服务(STM),今天宣布澳大利亚作为其下一个太空雷达的地点。西澳大利亚太空雷达代表了lelabs不断增长的S波段,分阶段阵列传感器的重要补充。在2022年完成时,它将将Leolabs的雷达位点总数扩展到六个,并将空间雷达的总数扩大到十个。“地球上没有比澳大利亚更具战略意义的地点来监测低地球轨道(LEO)活动的前所未有的增长,” Leolabs的首席执行官兼联合创始人Dan Ceperley说。“一方面,西澳大利亚的空间雷达非常适合追踪卫星和碎屑的能力,从而提高了我们所有的空间数据和映射服务的及时性另一方面,此雷达将加入我们的全球雷达星座,提高我们监视太空中关键风险和事件的能力。它进一步巩固了我们的领导地位,这是在南半球部署大量空间覆盖范围的唯一组织。这些功能在澳大利亚和全球构成了新产品和服务的独特机会。Leolabs很高兴支持这些指示。” Ceperley继续说:“西澳大利亚的太空雷达只是勒拉布人在澳大利亚进行长期投资的战略愿景的一个要素。”“这种愿景扩展到招募和成长世界一流的团队,这是澳大利亚太空社区不可或缺的一部分,并在全球范围内推动了Leolabs的活动在这方面,我很高兴地报告说,我们澳大利亚团队的领导已经到位,并希望积极扩展,尤其是在软件和其他技术领域中。我们的雷达是多年的投资,因此我们将承诺投资于新的空间经济的澳大利亚太空专业知识。“我们很高兴欢迎Leolabs来到澳大利亚,”澳大利亚太空工业协会的首席执行官詹姆斯·布朗(James Brown)表示,他们与我们发展澳大利亚太空工业基地的任务保持一致澳大利亚显然有机会成为太空监视的超级大国和全球太空治理的领导者,而勒拉布人当然可以在支持和告知这一任务方面发挥作用。我们认识到,西澳大利亚西部太空雷达仅仅是开始。” Leolabs Australia董事总经理Terry Van Haren说:“我对澳大利亚太空行业的未来更加乐观,勒拉布人会为建立未来而做出的贡献。”“狮子座的商业化和国家参与者在狮子座的参与继续加速,随着我们在这里扩大能力,勒拉布人准备支持澳大利亚在
例如,在所有空域类别中安全集成无人机系统 (UAS) 是释放其潜力的关键先决条件。自动驾驶飞机和城市空中交通 (UAM) 所需的技术进步以及人工智能 (AI) 的应用提供了重大机遇,但也带来了独特的挑战。对连通性、自动化和自主性的依赖性增加可能会增加航空电子设备的脆弱性,这需要采用集成的网络意识方法来实现网络弹性。同样,太空经济提供的令人兴奋的新前景具有巨大的潜力,但需要新的太空任务管理方法和支持太空交通管理 (STM) 运营的新网络物理架构。
我们正在创建一个 PoC,用于不同方之间安全且不可变的数据交换。这将包括可视化空间协调过程中发生的活动和事件、识别协调网络中的冲突和不一致以及支持通信基础设施管理(例如,记录故障、决策过程、警报时间等)的方法。我们的解决方案将能够评估运营商数据的质量,记录相关参与者之间的消息传输,并确保数据在通信过程中真实、不可变且未被更改,并且其可见性受到限制,利用分布式账本技术。此外,该解决方案将成为 STM 当局和监管机构的工具,提供空间交通协调的全球状态概览和空间交通管理法规的一致性监测。