摘要 我们研究了在超高真空低温扫描隧道显微镜 (STM) 中由飞秒激光激发 (亚) 纳米隧道结所驱动的光电流。尖端回缩曲线揭示了光驱动电荷转移,该曲线显示在极大的尖端-样品距离下有电流贡献,证明在较高能量下光激发电子的有效势垒高度大大降低。我们的测量表明,光诱导电子传输的幅度可以通过激光功率以及施加的偏置电压来控制。相反,光电流的衰减常数仅受这些参数的微弱影响。通过获取恒定电流地形图证明了具有光电子的稳定 STM 操作。通过使用一维势垒模型分析光电流,推导出多光子吸收导致的有效非平衡电子分布。
图1:TBRPPCO在PB(111)和BCS能量间隙的光谱上吸附。(a)Pb上的TBRPPCO分子岛的STM图像(111),中央CO原子显得最明亮(偏置电压:100 mV,隧道电流:50 PA,比例尺:1 nm)。超结构由1和2跨越。岛边缘的单个分子由虚线圆表示。白色箭头标记为110⟩方向。(b)孤立的TBRPPCO分子的STM图像(100 mV,50 PA,比例尺:1 nm)。(c)TBRPPCO在PB上计算出的松弛吸附几何形状(111)。(d)D I/ D V的光谱在干净的Pb上方的超导PB尖端(111)上方获得,并在嵌入岛上的TBRPPCO的Co Atom Center上,并在基板露台上分离(反馈环参数:10 mV,50 PA)。h +,h - 表示由于尖端和样品BCS DOS的对齐的冷凝峰引起的与隧道相关的光谱峰的高度; δ标记由冷凝峰距离定义的能隙宽度。(e)TBRPPCO岛(100 mV,50 PA,比例尺:2 nm)的STM图像,带有指示的特性镜检查位点。(f)宽度δ(反向三角形)和不对称η(三角形)从(e)中标记的十个分子上获得的d i/ d v光谱获得。阴影区域描绘了δ的不良边缘。
图4 A:RT 1 mL Si蒸发后,EpiGr/Bl/4H-SIC(0001)表面的STM(6.5 nm x 6.5 nm)图像。值得注意的是,位于(6x6)bl bump的一个(6x6)BL凸起之一中的Si原子插入引起的额外质量。其表观高度由D中报告的线轮廓(绿线)证明(请参阅红色箭头)。偏置电压0.1 V,反馈电流0.36 Na。图像上显示了比例尺。b:RT 1 ml Si蒸发后的EpiGr/Bl/4H-SIC(0001)表面的STM(12 nm x 12 nm)图像,显示了两个不同尺寸的纳米结构。偏置电压0.17 V,反馈电流0.5 Na。c:在b中成像的区域的2d-fft。虽然微弱,但请注意石墨烯蜂窝晶格的典型六边形模式以及6个斑点的伸长表明存在几个石墨烯晶格参数,这可能是由于Epi-Gr遭受的菌株而导致的菌株。e:较小的纳米结构的变焦在B中的方形白框中,显示了石墨烯网络和红色箭头指示的错位的存在。f。该区域的2d-fft在E中的缩小,显示了石墨烯蜂窝网络典型的六边形模式。在A和B中的STM图像上扫描的所有区域都可以看到石墨烯网络。在SM2C中的线轮廓中报告了该纳米结构的明显高度。
图S1。 RBV 3 SB 5的退火实验。 (a)退火循环的示意图。 (b)样品的退火过程。 时间轴的数字表示单个周期的退火时间。 退火实验的代表性STM地形显示在(D-G)中。 (C1,C2)原始RB表面的STM构图。 设定点:(C1)1 UM×1 UM,偏置电压V s = -300 mV,隧道电流i t = 20 pa; (C2)20 nm×20 nm,V s = -200 mV,i t = 0.1 Na。 (D1 -G1)Rb表面的地形(1 UM×1 UM,V s = -300 mV,I T = 20 pa)在退火循环D -G下标记为(b)。 (d2-g2)(d1-g1)(v s = -300 mV,i t = 20 pa)的相应的缩放形状图像,可以清楚地观察到RB的解吸:更多的RB效率出现在(D2)中; (E2)和(F2)中的短距离RB-√3×1重建形式;最后,RB-√3×√3重建显示在(G2)中。图S1。RBV 3 SB 5的退火实验。 (a)退火循环的示意图。 (b)样品的退火过程。 时间轴的数字表示单个周期的退火时间。 退火实验的代表性STM地形显示在(D-G)中。 (C1,C2)原始RB表面的STM构图。 设定点:(C1)1 UM×1 UM,偏置电压V s = -300 mV,隧道电流i t = 20 pa; (C2)20 nm×20 nm,V s = -200 mV,i t = 0.1 Na。 (D1 -G1)Rb表面的地形(1 UM×1 UM,V s = -300 mV,I T = 20 pa)在退火循环D -G下标记为(b)。 (d2-g2)(d1-g1)(v s = -300 mV,i t = 20 pa)的相应的缩放形状图像,可以清楚地观察到RB的解吸:更多的RB效率出现在(D2)中; (E2)和(F2)中的短距离RB-√3×1重建形式;最后,RB-√3×√3重建显示在(G2)中。RBV 3 SB 5的退火实验。(a)退火循环的示意图。(b)样品的退火过程。时间轴的数字表示单个周期的退火时间。退火实验的代表性STM地形显示在(D-G)中。(C1,C2)原始RB表面的STM构图。设定点:(C1)1 UM×1 UM,偏置电压V s = -300 mV,隧道电流i t = 20 pa; (C2)20 nm×20 nm,V s = -200 mV,i t = 0.1 Na。(D1 -G1)Rb表面的地形(1 UM×1 UM,V s = -300 mV,I T = 20 pa)在退火循环D -G下标记为(b)。(d2-g2)(d1-g1)(v s = -300 mV,i t = 20 pa)的相应的缩放形状图像,可以清楚地观察到RB的解吸:更多的RB效率出现在(D2)中; (E2)和(F2)中的短距离RB-√3×1重建形式;最后,RB-√3×√3重建显示在(G2)中。
我们考虑二维电子气体与量化的腔模式相互作用。我们发现电子和腔中光子之间的耦合会增强超导间隙。至关重要的是,与更幼稚的方法相比,PEIERLS阶段中的所有术语都保持鲜明对比,这可能导致虚假的超级级相变。我们使用平均场理论来表明差距与空腔耦合强度大致线性增加。可以通过扫描隧道显微镜(STM)测量值(STM)的测量值(或者对于Moir'E系统的薄片)(由于较大的晶格由于较大的晶格会更明显)与局部结构的电磁场形式相互作用,因此可以在本地观察到效果。我们的结果也与与腔模式相互作用的量子光学设置与量子光学设置有关,在该模式下,晶格的几何形状和系统参数可以在广泛的范围内调节。
方法样品制备使用“撕扯和堆叠”方法制造器件。用聚乙烯醇(PVA)拾取石墨烯和hBN。然后,将异质结构翻转到由甲基丙烯酸甲酯共聚物(Elvacite 2550/透明胶带/Sylgard 184)组成的中间结构上,并转移到具有 Ti/Au 电极的预先图案化的 SiO 2/Si 芯片上。将残留聚合物溶解在N-甲基-2-吡咯烷酮、二氯甲烷、水、丙酮和异丙醇中。我们进一步使用AFM尖端清洁和高温形成气体退火程序清洁样品表面。最后,将器件在170°C的超高真空中退火12小时,并在400°C下退火2小时,然后将其转移到STM中。 STM 测量 STM/STS 测量是在自制的稀释制冷机 STM 上进行的,其钨尖端在 Cu(111) 表面上制备。MATBG 的载流子密度由施加到简并掺杂 Si 的栅极电压 V g 和通过 Au/Ti 电极施加到 MATBG 的样品电压 V s 控制。dI/dV 是通过锁定检测由添加到 V s 的交流调制 V rms 引起的交流隧道电流来测量的。测量是在样品偏置电压 V s 接近零的情况下进行的,以避免由于 K 点或 M 点声子 43 引起的非弹性隧穿。序参数分解有关此过程的完整详细信息和说明,我们请读者参阅 SI。简而言之,大型低偏置 STM 图像被分割成较小的 0.25 - 1 nm 2 子区域。每个子区域都相对于每个子区域的中心进行傅里叶变换。我们对 FFT 峰值应用位置相关的相位因子,以强制跨子区域保持一致的原点。在 IVC 波矢处获得的每个局部 FFT 的三个独立复值分解为三个复 IVC 序参数(“IVC 键”、“IVC 位点 A”和“IVC 位点 B”),它们对应于 C 3 点群的三个不可约表示 {(1, 1, 1)、(1, ω, ω 2) 和 (1, ω 2 , ω),其中 ω ≡ e 2πi/3 }。根据构造,如果 LDOS 是莫尔周期的,则这些序参数也是莫尔周期的。参考文献:1. Cao, Y. 等人。魔角石墨烯半填充时相关绝缘体的行为
尽管受到 Baars 全局工作空间模型的启发,但 Baars 模型(图 1a)与 CTM(图 1b)之间存在显著差异。就架构而言,Baars 有一个中央执行器,而 CTM 没有:它是一个分布式系统,能够实现通用智能的功能和应用。在 CTM 中,输入传感器将环境信息直接传输到适当的 LTM 处理器;输出执行器根据直接从特定 LTM 处理器获得的信息对环境起作用。在 Baars 模型中,这些输入和输出通过工作记忆进行处理。在 CTM 中,块是正式定义的,并由 LTM 处理器提交以参加明确定义的 STM 竞争;在 Baars 模型中,两者都没有正式定义。对于 Baars 来说,输入和中央执行器之间发生了有意识的事件;在 CTM 中,有意识的意识是 LTM 处理器接收从 STM 全局广播的块。
YBCO探针安装在LN 2冷的STM系统中。获得了有关隧道电流特征的初步结果。在高V范围内观察到隧道电流的急剧增加,并且在低V范围内也获得了类似SIS的I-V曲线。
弗罗茨瓦夫科技大学,纳米计量学系 (1) ORCID: 1. 0000-0003-1565-7278; 2. 0000-0001-6649-1963; 3. 0000-0001-6218-0658; 4.0000-0001-9197-1862; 5. 0000-0002-5146-2868; 6. 0000-0003-1300-6420; 7.0000-0001-8482-301X; 8. 0000-0002-3187-1488; 9. 0000-0003-4182-9192 doi:10.15199/48.2024.06.41 教育扫描隧道显微镜——用于纳米技术教学和纳米计量研究的开放式架构平台摘要。在本文中,我们提出了一个教育性扫描隧道显微镜平台,可以研究纳米级的表面。该设计结构的主要优点是其开放式架构,可以进行各种实验,包括教学实验和高度专业化的科学工作。该系统是弗罗茨瓦夫科技大学电子、光子学和微系统学院纳米计量学系文凭和博士论文的一部分。 (教育扫描隧道显微镜——用于教育和纳米计量研究的开放式架构平台)摘要。在本文中,我们介绍了内部硬件和软件平台,可以演示扫描隧道显微镜 (STM) 的设计和操作以及衍生的诊断技术,从而能够确定纳米级表面的特性。所述设置的主要优点是开放式架构,这对于全面了解构造的某些方面以及执行测量的方式至关重要。由于平台采用模块化设计,学生可以通过基础培训课程和文凭课程等各种形式的学习活动来提高自己的能力。所描述的解决方案是一种独特的设置,它是利用弗罗茨瓦夫科技大学纳米计量学系研究人员的经验开发的。关键词:扫描探针显微镜、扫描隧道显微镜、纳米计量学、控制和信号电子学。简介扫描隧道显微镜 (STM) 自 1982 年开发以来 [1,2],已发展成为一种先进的诊断技术,它与其他样品制备技术和分析工具相结合,能够以原子分辨率洞察材料的结构 [3–6]。尽管扫描隧道显微镜的概念看似简单,但实际设置在实施特定测量模式以及仪器方面却很复杂。然而,STM 背后的理念仍然足够简单,本土建筑商可以开发自己的测量系统——有很多自己动手 (DIY) 的项目可以找到 [7]。此外,控制和测量分析软件领域也正在快速发展[8,9]。与市售机器相比,开发的显微镜并不复杂,也不是开放式装置。在未来纳米技术专家的教育过程中,获得 STM 设计和操作的透明度是一个重要问题。培训旨在提供必要的知识和经验,教他们如何准备和使用 STM,以获得样品表面的原子分辨率成像。特别是,处理样品、准备扫描尖端、配置系统的特定部分、优化测量参数以及数据处理和分析等问题是培训的重要组成部分。很少有实验室会自下而上地开设扫描探针显微镜 (SPM) 课程 [10]。在这种情况下,需要为学生提供纳米技术工具 [11]。为了提供实现上述培训条件的环境,纳米计量学系开发了一种特定的硬件软件设置。与商用 STM 系统不同,它在信号处理和采集方面提供了完全透明性,包括隧道电流、PID 信号(特别是 Z 和误差信号)、扫描控制(X、Y)信号和输出数据。系统由专门的
•许多大学,STM组织,出版伦理组织(例如COPE),学识渊博的社会和出版商为研究人员制定了负责(生成)AI的研究人员的政策。我们正在合作制定统一和可理解的准则,并通过作者网络研讨会,在线面板和其他活动提供更多的上下文。