首先,对于非本行业人士,需要了解一些背景知识。14CFR(联邦法规)规定了适用于运输类飞机的适航法规。14CFR/CS 25.1309 是 14 CFR/CS 的子章节,描述了适用于 FAA(联邦航空管理局)和 EASA(欧洲航空安全局)设备、系统和装置的规则。FAA/EASA 不要求认证的具体做法,但会发布咨询通告,承认开发和认证飞机的可接受方法。一份咨询通告 AC20-174 承认 SAE 航空航天推荐做法 (ARP) 4754A 是建立开发保证流程的可接受方法。ARP 4754A 记录了可在整个需求开发周期中使用的流程(图 1.1 的上半部分)。SAE ARP 4761 描述了安全评估过程,是 ARP 4754A 描述的更大开发过程的支持部分。EASA 提供等效且协调的欧洲法规和指导。
摘要。本文展示了如何使用一种新的危害分析技术 STPA(系统理论过程分析)在概念开发阶段的早期生成高级安全要求,然后帮助设计系统架构。在做出决策时,可以使用 STPA 来细化这些一般的系统级要求。该过程与设计和生命周期的其余部分密切相关,因为 STPA 可用于提供信息以协助整个开发甚至运营阶段的决策。STPA 也适用于基于模型的工程过程,因为它在系统模型上工作(在做出设计决策时也会进行细化),尽管该模型与当今通常为基于模型的系统工程提出的架构模型不同。该过程促进了整个开发过程的可追溯性,因此可以更改决策和设计,而对重新进行以前的分析的要求最低。最后,虽然本文描述了与安全性相关的方法,但它可以应用于任何新兴系统属性。
STPA 是一种新的危险分析技术,可以比传统技术识别更多的危险原因。它基于这样的假设:事故是由不安全的控制而不是组件故障引起的。为了展示和评估 STPA 在旋翼机上的应用,它被用来分析与电气和电传飞行控制系统 (FCS) 相关的 UH-60MU 警告、警告和咨询 (WCA) 系统。将 STPA 结果与使用 SAE ARP 4761 和 MIL-STD-882E 中描述的传统安全流程对 UH-60MU 进行的独立危险分析进行了比较。STPA 发现了与传统技术相同的危险原因,还发现了使用传统方法未发现的东西,包括设计缺陷、人为行为以及组件集成和交互。该分析包括系统的组织和物理组件,可用于从开发开始就将安全性设计到系统中,同时符合 MIL-STD-882。
摘要 — 本文介绍了一种使用 STPA 生成复杂且高度集成的飞机系统需求的方法,STPA 是一种危险分析技术,可处理硬件、软件、人工操作员并将它们集成到一个统一的过程中。使用通用商用飞机的空气管理系统(发动机排气、客舱空调、增压和防冰)接口来说明该方法。首先应用 STPA 通过结构化的自上而下方法识别不良/不安全的系统行为。随后根据 STPA 的结果生成需求,以处理这些不安全行为。应用结果表明,这种方法允许从早期开发阶段开始系统地评估系统的设计空间,并生成需求来处理那些从间接组件交互中出现的属性,这些属性通常会危及高级系统目标的实现。该方法还特别很好地解决了人机交互问题,将人为因素过程整合到整个工程过程中。
摘要。本文展示了如何使用一种新的危险分析技术 STPA(系统理论过程分析)在概念开发阶段的早期生成高级安全需求,然后帮助设计系统架构。这些一般的系统级需求可以在做出决策时使用 STPA 进行细化。该过程与设计和生命周期的其余部分密切相关,因为 STPA 可用于提供信息以协助整个开发甚至运营阶段的决策。STPA 也适用于基于模型的工程过程,因为它在系统模型上工作(在做出设计决策时也会进行细化),尽管该模型与当今通常为基于模型的系统工程提出的架构模型不同。该过程促进了整个开发过程的可追溯性,因此可以更改决策和设计,而对重新进行先前分析的要求最低。最后,虽然本文描述了与安全性相关的方法,但它可以应用于任何新兴的系统属性。
可再生能源在碳中立性的背景下引起了行业和学术界的越来越多的关注。对于风和太阳能,对自然过程的强烈依赖会导致能源生产和实际需求之间的不平衡。储能技术,例如压缩空气储能(CAES)是有望增加可再生能源渗透的解决方案。但是,CAES系统是一种多组分结构,在该过程中涉及多种能量形式,但受高温和高压工作条件的影响。CAES系统是一个复杂的流程表,由充电和放电过程组成。应优化该过程,以实现每种形式的最佳热力学和经济性。在最佳设计条件下,一旦发生故障,例如对人类,环境和资产的伤害,可能会导致严重的后果。有限的关注和稀缺信息已向CAES系统风险管理支付。因此,本文应用了系统理论过程分析(STPA),这是一种基于系统理论的自上而下的方法,以识别CAES系统安全危害。结果有望为从业人员提供有关CAES系统安全性和可靠性的初步指南。因此,更可靠的CAES系统可以促进更灵活的能源系统,并使用更有效,更经济的可再生能源利用。
摘要 - 本文介绍了一种使用 STPA 生成复杂且高度集成的飞机系统需求的方法,STPA 是一种危险分析技术,可处理硬件、软件和人工操作员,并将它们集成到一个统一的过程中。该方法使用通用商用飞机的空气管理系统(发动机排气、客舱空调、增压和防冰)的接口进行了说明。首先应用 STPA 通过结构化的自上而下的方法识别不良/不安全的系统行为。随后根据 STPA 的结果生成需求,以处理这些不安全行为。应用结果表明,这种方法允许从早期开发阶段开始系统地评估系统的设计空间,并生成需求来处理那些从间接组件交互中出现的属性,这些属性通常会危及高级系统目标的实现。这种方法还特别很好地解决了人机交互问题,将人为因素过程整合到整个工程过程中。
本研究考虑了识别安全约束和为使用神经网络控制系统 (NNCS) 的深度强化学习 (RL) 战术自动驾驶仪开发运行时保证 (RTA) 的问题。本研究研究了 NNCS 执行自主编队飞行而 RTA 系统提供防撞和地理围栏保证的特定用例。首先,应用系统理论事故模型和过程 (STAMP) 来识别事故、危险和安全约束,并定义地面站、载人飞行长机和代理无人僚机的功能控制系统框图。然后,将系统理论过程分析 (STPA) 应用于地面站、载人飞行长机、代理无人僚机和僚机内部元素之间的交互,以识别不安全的控制动作、导致每种动作的情景以及降低风险的安全要求。这项研究是 STAMP 和 STPA 首次应用于受 RTA 约束的 NNCS。
未来的旋翼飞机设计非常复杂,可选择载人,并包括先进的团队概念,这些概念会产生未知的人机交互安全风险。系统理论过程分析 (STPA) 可以分析这些复杂系统的危险。本文介绍了如何在未来直升机的早期概念开发中应用 STPA,以防止不可接受的损失。该系统被建模为分层控制结构,以捕获组件之间的交互,包括人和软件控制器。从这些关系中识别出不安全的控制操作,并用于系统地得出由系统组件之间的危险交互和组件故障引起的因果场景。然后生成系统要求以缓解这些情况。重点介绍了解决人为因素相关问题的场景和要求子集。尽早发现这些问题有助于设计人员 (1) 完善操作和控制职责的概念,以及 (2) 有效地将安全性设计到系统中。