为了弥补异种材料和复合材料的功能限制,人们通过各种工艺实现了 FGM(功能分级材料)结构。随着 3D 打印技术的发展,可以将材料局部应用于所需区域,因此 FGM 的应用范围有望扩大。特别是,使用 DED(定向能量沉积)方法的 3D 打印工艺可以组合各种材料,并且可以说是实现 FGM 结构的合适工艺,因为还可以通过改变结构和热输入来控制密度。在本研究中,为了在钢和镍材料之间组成异种结构,进行了 STS316L 和 IN625 之间异种材料的沉积。特别是,通过应用 FGD(功能分级沉积)结构,根据每种成分比评估微观结构和机械性能。在STS316L与IN625的FGD界面,确认了各组成比的成分分布,在STS316L(80wt.%):IN625(20wt.%)的组合截面上观察到了裂纹。确认了力学性能后,虽然在同样的截面上也观察到了断裂,但内部也观察到了未熔融相,因此认为微观结构与力学性能之间的关系有待进一步研究。
摘要:激光定向能量沉积 (L-DED) 是一种值得注意的增材制造方法,其中金属粉末通过喷嘴喷涂,然后使用激光逐层压实。与其他增材制造工艺不同,DED 对制造部件尺寸的限制较少,这使其有利于生产大型部件。然而,在增材制造中使用 DED 需要仔细优化各种工艺参数,包括激光功率、送粉速率、喷嘴扫描速度和沉积路径,因为这些参数会显著影响制造部件的几何形状和性能。最近的研究已经广泛调查了在不同能量密度下通过 DED 制造的部件的微观结构和性能,但对与送粉相关的变量的研究仍然缺乏。在本研究中,以粉末线密度 (PLD) 为参数,观察到在使用 STS316L 进行 DED 增材制造时,焊珠几何形状、微观结构和力学性能的变化以及送粉密度的变化。通过粉末进料速率和扫描速度控制,利用粉末线密度对 STS316L 合金粉末进行 1 线沉积,从而能够在沉积过程中观察焊珠的几何形状和熔池形状。此外,通过控制粉末线密度的 DED 制造方形样品,以观察由此产生的微观结构和机械性能。观察到,即使在相同的能量密度下,样品也会根据粉末线密度表现出不同的晶粒形貌、微观结构和机械性能,各向异性的变化尤其显著。这凸显了粉末进料密度作为与能量密度一起优化 DED 增材制造工艺的关键变量的重要性。本研究的结果有望通过调节粉末进料密度来帮助控制金属增材制造工艺中制造部件的各向异性和强度。
