光催化全水分解为氢气和氧气对于地球上长期可再生、可持续和清洁燃料生产来说是理想的。金属硫化物被认为是理想的产氢光催化剂,但它们的成分均一性和典型的硫不稳定性导致产生惰性氧,这仍然是全水分解的巨大障碍。在这里,ZnIn 2 S 4 (DO-ZIS) 的畸变引起的阳离子位点氧掺杂在 S 1 – S 2 – O 位点的局部结构中产生相邻原子位点之间显著的电负性差异,其中 S 1 位点富电子,而 S 2 位点缺电子。强的电荷重分布特性可激活 S 2 位点的稳定氧反应,避免了金属硫化物光催化中常见的硫不稳定问题,而 S 1 位点有利于氢气的吸附/解吸。因此,在 DO-ZIS 中实现了整体水分解反应,其太阳能到氢的转化效率高达 0.57%,经过 120 小时光催化测试后,保留率约为 91%。在这项工作中,我们从电负性差异的角度启发了一种通用设计,以激活和稳定金属硫化物光催化剂,实现高效的整体水分解。
摘要:与传统注塑工艺相比,基于挤压的聚合物复合磁体的增材制造可以增加固体负载体积分数,并通过打印喷嘴产生更大的机械力。约 63 vol% 的各向同性 NdFeB 磁体粉末与 37 vol% 的聚苯硫醚混合,并在使用大面积增材制造时制造粘结永磁体,而磁性能没有任何下降。聚苯硫醚粘结磁体的拉伸应力为 20 MPa,几乎是尼龙粘结永磁体的两倍。增材制造和表面保护树脂涂层粘结磁体满足高达 175 ◦ C 的工业稳定性标准,1000 小时内的通量损失为 2.35%。与无涂层磁体相比,它们在酸性溶液(pH = 1.35)中暴露 24 小时并在 80 ◦ C 下退火 100 小时(相对湿度为 95%)时也表现出更好的耐腐蚀行为。因此,聚苯硫醚粘合、增材制造、保护性树脂涂层粘合永磁体具有更好的热性能、机械性能和磁性。
根据第 231/2001 号立法法令,担任环境与工作安全管理系统和组织模型开发的顾问,负责合同管理、风险评估、立法和系统合规审计、尽职调查、员工培训等。在重要公司中,例如 SNAM、SNAM Rete Gas、ITALGAS、ACCIAI SPECIALI Terni、STOGIT、RAI Radiotelevisione Italiana、MARCEGAGLIA SpA、SPEA-Autostrade per l'Italia、PAVIMENTAL、Pizzarotti、SEA Milan Airports、Milan Metropolitan Area、ST Microelectronics、GSK Vaccines (formerly Novartis Vaccines)、CHIESI Farmaceutici、IREN Emilia、IES-MOL Raffineria di Mantova、OCME、Coca-Cola-SIBEG、Lloyd's Register QA Italia、Gruppo ROSETTI Offshore- Onshore 等。代表重要律师事务所就工作事故和环境损害刑事诉讼提供CTP(当事人的技术顾问)。米兰理工学院“法医工程”硕士和“BIM 经理”硕士讲师。日报《Il Sole 24 Ore》“L'Esperto Risponde”工作场所安全板块成员。约 700 余年的演讲者和教师。包括由 Sole 24 Ore、Paradigma、Istituto di Ricerca Internazionale、Business International、Synergia、IPSOA 等组织的课程、会议和研讨会。以及专业学院和命令。曾任创新和公共管理部公民门户网站(www.italia.gov.it)“L'Esperto Risponde”团队成员,担任环境和工作场所安全专题领域负责人。前公共工程部安全工作组成员(已任命
1个流行病学研究生课程,里奥格兰德大学(R. Ramiro Barcelos),R.Ramiro Barcelos,2600/518,巴西Porto Alegre CEP 90035-003; brunacristine.chwal@gmail.com(B.C.C.); rodrigocpdosreis@gmail.com(R.C.P.D.R.); mischmidt49@gmail.com(m.i.s.)2美国联邦大学的地位,阿雷格尔·CEP 90040-060,巴西3号医院AlegreClís,Alegre Porto Alegre医院 巴西; sandhi.barreto@gmail.com 5环境中的劳动教育和SA,Oswaldo Cruz Institute,Oswaldo Cruz基金会,里约热内卢邮政编码21040-360,巴西; rohgriep@gmail.com *通信:bbduncan@ufrgs.br
通讯作者:Livio Trusolino,意大利都灵坎迪奥洛癌症研究所 FPO IRCCS 转化癌症医学实验室,Strada Provinciale 142,km 3.95,坎迪奥洛 10060。电话 +39 011 993-32-27.电子邮件:livio.trusolino@ircc.it 资金:由意大利癌症研究协会 AIRC 资助,研究者资助 22802; AIRC 5x1000 拨款 21091; AIRC/CRUK/FC AECC 加速器奖 22795; H2020 赠款协议编号754923 巨人;皮埃蒙特癌症研究基金会 - ONLUS,5x1000 卫生部 2014、2015 和 2016。LT 是 EurOPDX 联盟的成员。利益冲突披露:LT 获得 Symphogen、Servier、Pfizer、Menarini 和 Merus 的研究资助,并且是 Eli Lilly、AstraZeneca 和 Merck KGaA 的演讲局成员。
<崇拜副委员会Ana Biondi(阿根廷布宜诺斯艾利斯大学)布宜诺斯艾利斯,阿根廷)安德烈斯A.J.P. div>Klein-Szanto(美国费城福克斯·蔡斯癌症中心)丹尼尔·G·奥尔梅多(阿根廷布宜诺斯艾利斯大学)Guillermo Raiden(阿根廷图库曼大学)Sigmar de Mello Rode(巴西Paulista rodian sigriansian funingian offunlide offunlide offunlide of to巴西里奥格兰德·杜尔(Rio Grande Do Sul))阿曼达·E·施温(Amanda E. Schwint)(阿根廷国家原子能委员会)
全固态电池被认为是锂离子电池最有前途的竞争对手之一。固体电解质的两个广为人知的性能指标是离子电导率和稳定性。本文发现,通过硫化物基固体电解质中氯取代的协同效应,可以改善这两者。具体来说,通过增加对机械收缩引起的电压稳定性增强的敏感性,氯取代的硫化物固体电解质可以更好地抑制由本体分解和电极界面反应引起的不稳定性。因此,一些富氯锂银锑矿的稳定窗口可以系统地高于一些其他缺氯或无氯电解质,尤其是在实施机械收缩电池组装和测试条件下。因此,使用这些富含氯的锂银锗矿,无需额外涂层,就可展示 4 V 至 5 V 级正极与锂金属负极配对的固态电池系统。此外,由于氯组分会调节低电压下锂银锗矿的稳定性和不稳定性,因此我们可以设计具有不同锂金属稳定性层次的多层配置,以展示固态电池在相对高电流密度下的稳定循环。研究发现,电解质中适中的氯组分最能抑制作为中心电解质层的锂枝晶渗透,除了两个众所周知的稳定性和离子电导率指标外,还强调了略微增加的“不稳定性”是这里相关的隐藏性能指标。了解硫化物电解质中的氯取代效应为全固态电池提供了重要的设计原则。