抽象背景:尽管使用了广泛使用,但与分布量比(DVR)相比,半定量标准化吸收率(SUVR)可能会偏差。这种偏见可能是由脑血流变化(CBF)部分解释的,并且可能还取决于基础淀粉样蛋白β(Aβ)负担的程度。这项研究旨在将SUVR与DVR进行比较,并评估基本Aβ负担和CBF对SUVR偏置的影响,主要是认知未损害的参与者。根据双重时间窗口协议扫描参与者,其中[18 f]氟甲莫(n = 90)或[18 f] florbetaben(n = 31)。使用了两步简化的参考组织模型的基于验证的基于函数的实现来得出DVR和R 1参数图像,并在注射后90至110分钟计算出SUVR,所有这些都以小脑灰质作为参考组织。首先,使用线性恢复和平淡的altman分析将(区域)SUVR与DVR进行比较。然后,应用广义线性模型来评估(偏置)相对于DVR(偏置)是否可以通过r 1来解释全球皮质平均(GCA),前胎,后扣带回和眶额区域。结果:尽管相关性很高(GCA:R2≥0.85),但观察到SUVR相对于DVR的大量高估和比例偏置。在SUVR或SUVR偏置和R 1之间观察到负相关,尽管不显着。结论:目前的发现表明,SUVR相对于DVR的偏差与潜在的Aβ负担密切相关。Eudract编号:2018-002277-22,注册:25-06-2018。此外,在主要由认知未受损的个体组成的队列中,相对CBF对SUVR中偏差的影响似乎有限。关键字:阿尔茨海默氏病,淀粉样蛋白宠物,脑血流,定量,suvr偏见
1,德国科隆大学科隆大学核医学系; 2大脑分子组织,德国J欧里希神经科学与医学研究所; 3德国慕尼黑的德国神经退行性疾病中心; 4慕尼黑系统神经病学集群,德国慕尼黑; 5德国慕尼黑LMU慕尼黑慕尼黑大学医院核医学系; 6德国莱比锡大学医院核医学系; 7德国科隆大学,科隆大学医学院和大学医院神经病学系; 8德国慕尼黑LMU慕尼黑大学医院神经病学系; 9 Invicro,LLC,马萨诸塞州波士顿; 10分子神经影像学,康涅狄格州纽黑文市Invicro的一个师; 11德国科隆大学的放射化学与实验分子成像研究所; 12研究中心,核化学研究中心J€ulich,德国J€ulich; 13莱比锡大学医院认知神经病学诊所和德国莱比锡的麦克斯·普朗克人类认知与脑科学研究所; 14 Life Molecular Imaging GmbH,德国柏林;和15德国神经退行性疾病中心,德国波恩/科隆1,德国科隆大学科隆大学核医学系; 2大脑分子组织,德国J欧里希神经科学与医学研究所; 3德国慕尼黑的德国神经退行性疾病中心; 4慕尼黑系统神经病学集群,德国慕尼黑; 5德国慕尼黑LMU慕尼黑慕尼黑大学医院核医学系; 6德国莱比锡大学医院核医学系; 7德国科隆大学,科隆大学医学院和大学医院神经病学系; 8德国慕尼黑LMU慕尼黑大学医院神经病学系; 9 Invicro,LLC,马萨诸塞州波士顿; 10分子神经影像学,康涅狄格州纽黑文市Invicro的一个师; 11德国科隆大学的放射化学与实验分子成像研究所; 12研究中心,核化学研究中心J€ulich,德国J€ulich; 13莱比锡大学医院认知神经病学诊所和德国莱比锡的麦克斯·普朗克人类认知与脑科学研究所; 14 Life Molecular Imaging GmbH,德国柏林;和15德国神经退行性疾病中心,德国波恩/科隆
免疫疗法,尤其是检查点抑制剂,例如抗 - 程序性细胞死亡蛋白1(抗 - PD-1)抗体,通过增强免疫系统的capabil-靶向和杀死癌细胞,通过增强了癌症来进行转移癌症治疗。但是,预测免疫疗法反应仍然具有挑战性。18 F-阿拉伯糖基鸟嘌呤([[18 F] F-arag)是一种靶向活化T细胞的分子成像示踪剂,可以通过非侵袭性定量来促进肿瘤微环境中免疫细胞活性的无创量化疗法的反应评估。这项研究的目的是获得[18 F] F-ARAG的总体药代动力学的初步数据,作为免疫反应评估的潜在定量生物标志物。方法:该研究由90分钟的4个健康受试者和1名非小细胞肺癌患者进行90分钟的总体动态扫描,这些患者在抗-PD-1免疫疗法之前和之后进行了扫描。使用Akaike信息标准模型选择的隔室建模用于分析各种器官中的示踪剂动力学。此外,分析了原发性肺肿瘤和4个纵隔淋巴结的7个子区域。进行了实用的鉴别能力分析,以评估动力学参数估计的可靠性。计算了SUV平均值,组织与血液SUV比(SUVR)和Logan Plot Slope(K Logan)的相关性,并计算了总分布量(V T),以识别动力学建模的潜在替代物。结论:我们的发现强调了[18 f] f-arag动态成像作为量化结果:k logan和suvr与v t之间观察到很强的相关性,这表明它们可以用作V t的有前途的替代物,尤其是在血液量低的器官中。此外,实用的识别能力分析表明,动态[18 f] f-arag PET扫描可能会缩短为60分钟,同时为所有感兴趣的器官保持定量准确性。研究表明,尽管[18 F] F-ARAG SUV图像可以提供有关免疫细胞分布,动力学建模或图形分析方法的见解,以便在治疗后准确定量免疫反应。尽管SUV平均值显示治疗后肿瘤的不同子区域的变化,但SUVR,K Logan和V t在所有分析的肿瘤的分析子区域均具有较高的实用性认同。
COVID-19大流行对身心健康产生了全球影响,临床人群受到了不成比例的影响。然而,迄今为止,大流行对现有临床条件的有害影响的机制尚不清楚。在这里,我们调查了大流行的发作是否与慢性下背痛(CLBP)患者的炎症标志物的脑/血液水平升高和MRI估计的大脑年龄有关,而不论其感染病史如何。对56名成年参与者进行了一项回顾性队列研究,该参与者使用综合正电子发射断层扫描/磁共振成像(PET/ MRI)和放射性物体[11 C] PBR28的成年参与者(28个“ Perpooty”,28“ Pandemic”)进行了研究,与神经蛋白素fllammatory Markerator 18Kda cransotein(Transector)结合。图像数据是在2017年11月至2020年1月之间(“大流行前” CLBP)或2020年8月至2022年5月(“大流行” CLBP)收集的。与院前组相比,大流行患者在脑TSPO水平上表现出广泛的统计学显着升高(p = .05,群集校正)。当1)排除3个大流行受试者时,还观察到大流行组的PET信号升高,或者2)在较小的参与者子集中使用次级结局测量值(分布量-v t-和V t率-D -t-和v t率-DVR)。大流行受试者还表现出炎症标志物的血清水平升高(IL-16; p <.05)和估计的BA(p <.0001),它们与[11 c] pbr28 suvr(r's≥.35; p'05; p'05; p'<.05)呈正相关。在大流行组中升高的疼痛干扰评分(p <.05)与杏仁核中的[11 c] pbr28 suvr负相关(r = - 。46; p <.05)。
血脑屏障(BBB)限制了阿尔茨海默氏病(AD)和其他神经系统疾病的治疗递送。动物模型表现出具有重点超声(FUS)的β-淀粉样菌斑的安全性BBB开放和还原。我们最近证明了在六名具有早期AD的参与者的海马和内嗅皮层中FUS诱导的BBB开口的可行性,安全性和可逆性。现在,我们报告了通过FUS处理对β-淀粉样菌斑的BBB开口的影响。六名参与者在基线时进行了18次F-Florbetaben PET扫描,在第三次FUS治疗完成后1周(间隔60天)。PET分析比较了经过处理和未经处理的半球中海马和内嗅皮层的分析,发现18 f氯贝替替伯的比率降低。标准摄取值比(SUVR)降低范围为2.7%至10%,平均为5.05%(±2.76),表明β-淀粉样菌斑块降低。
注意:在非携带者,无症状突变携带者和有症状的突变载体中,使用线性混合效应模型(用于连续结果)和具有逻辑链接的广义线性混合效应模型来计算特征差异的重要性。所有混合模型均包含随机的家庭效应,以说明同一家族参与者之间的结果指标的关联。连续措施表示为中值(IQR)。缩写:Adad,常染色体显性阿尔茨海默氏病; cdr-sob,临床痴呆评级盒子的总和; CSF,脑脊液); Eyo,估计症状发作的年; FDG,18 F-氟脱氧葡萄糖; GFAP,神经胶质原纤维酸性蛋白; IQR,四分位数范围; MMSE,小型国会考试; n,参与者的总数(分别有突变非载体,无症状突变携带者和有症状的突变载体的数量);宠物,正电子发射断层扫描; PIB,11 C-pittsburgh化合物B; SUVR,标准化的吸收值比。
摘要目的[18 f] Flortaucipir Pet是阿尔茨海默氏病(AD)的强大诊断和预后工具。tau状态定义主要基于半定量措施的文献,而在临床环境中通常优选视觉评估。我们将视觉评估与已建立的半定量措施进行了比较,以对受试者进行分类并预测记忆诊所人群认知能力下降的风险。方法,我们包括了接受[18 f] Flortaucipir Pet的日内瓦记忆诊所的245名个人。淀粉样蛋白状态可用于207个人,临床随访135。所有扫描均由三名独立评估者盲目评估,他们根据Braak阶段将扫描对扫描进行分类。从全局的元ROI中获得标准化的吸收值(SUVR)值以定义tau的阳性,并应用了简化的颞叶枕(STOC)以获得半优化的tau阶段。使用Cohen的Kappa(K)测试了措施之间的一致性。ROC分析和线性混合效应模型来测试使用视觉和半定量方法获得的TAU状态和阶段的诊断和预后值。结果,我们在tau braak阶段的视觉解释中发现了良好的评价者间可靠性,与评估者的专业知识无关(k> 0.68,p <0.01)。在TAU状态的基于视觉和SUVR的分类之间同样达成了一个良好的协议(k = 0.67,p <0.01)。结论我们的结果表明,视觉评估对于定义记忆诊所人口中的TAU状态和阶段是可靠的。所有TAU评估方式都显着区分了与其他受试者(AUC> 0.85)的其他受试者(AUC> 0.80)和淀粉样蛋白阳性的受试者(AUC> 0.80)和淀粉样蛋白阳性。线性混合效应模型表明,tau阳性个体的认知能力下降明显快,而不是tau阴性组(p <0.01),独立于分类方法。高评分者间的可靠性,实质性一致性以及视觉等级和半定量方法的类似诊断和预后性能表明,在临床实践中,[18 F] Flortaucipir PET可以在视觉上进行可靠地评估。
[11C] -PIB-PET扫描。受试者在PIB SUVR> 1.265的截止水平下被认为是β-淀粉样蛋白阳性。 N.A.=未评估。(d)横截面II及其4个诊断组的特征。分组基于认知测试(健康对照主题= HC,轻度认知障碍= MCI)和由[18F] -Flutemetamol(FMM)-PET扫描测量的皮质β-淀粉样蛋白。受试者在fmm centiloid> 12的截止水平上被认为是β-淀粉样蛋白阳性。(e,f)t分布的随机邻居嵌入(TSNE)和所有CD45 + PBMC的群集和流量聚类在所有受试者中平均的I(e)(e)的所有受试者(tsne设置:迭代:迭代= 12'00 000,事件,事件= 10'000 = 10'000 = 10'000; permulation = 10'000; inii; (f)(TSNE设置:迭代= 4'000,事件= 10'000,Perplexity = 50; Flowsom设置:K15,合并为八个主要细胞种群)。(g,h)热图,用于鉴定八个主要的CD45 + PBMC簇。热图显示了横截面I(G)和横截面II(H)的Arcsinh转换的中位标记强度。
图4左上,模拟的生物标志物进化,用于总平均皮质和皮层匹兹堡化合物B(PIB),总平均皮质和皮层皮质和皮层下氟氧化葡萄糖(FDG),总灰物质体积(缩放到常见的间隔)(缩放到一个常见的间隔)(缩放为突变载体中的人工网络(ANN))。阴影区域指示模型的变异性,其估计的发病年龄(EAO)标记为垂直线。右上,对于总平均皮质和皮质下PIB,总平均皮质和皮质下FDG以及总的灰质体积(缩放为常见的间隔),在突变非携带者(NC)中得出的总灰质体积(缩放到公共间隔)。左下,平均PIB,平均FDG和总灰质体积(缩放到公共间隔)的归一化生物标志物变化速率适合多项式曲线,显示95%的置信区间。右下,给定未来预测的时间量的预测(归一化)生物标志物值的平均绝对误差,与未来投影到未来的两级多项式曲线相吻合。错误随着未来预测的时间的增加而线性增加。suvr,标准化的吸收值比
