1斯图加特大学,斯图加特风能(SWE),全民5B,70569 Stuttgart,德国2 DTU风能系统,丹麦技术大学,Frederiksborgvej 399,Roskilde 4000,丹麦
J.A. Gago,主席。 Cycher,Rus L. Kel,Slo B. Hedberg,SweA.Sjöland,Swe E. Vlassopoulos,Swi G.Burnett,UK D. Hambley,UK S.J. Maheras,美国美国麦卡卢姆,美国麦克马尼曼,美国史密斯,美国A. Worrall,美国M. Ramosse,Ec R. R. R. Tadesse,OECD/Nea A. Erim,Wna Y.J.A.Gago,主席。 Cycher,Rus L. Kel,Slo B. Hedberg,SweA.Sjöland,Swe E. Vlassopoulos,Swi G.Burnett,UK D. Hambley,UK S.J. Maheras,美国美国麦卡卢姆,美国麦克马尼曼,美国史密斯,美国A. Worrall,美国M. Ramosse,Ec R. R. R. Tadesse,OECD/Nea A. Erim,Wna Y.Gago,主席。Cycher,Rus L. Kel,Slo B. Hedberg,SweA.Sjöland,Swe E. Vlassopoulos,Swi G.Burnett,UK D. Hambley,UK S.J.Maheras,美国美国麦卡卢姆,美国麦克马尼曼,美国史密斯,美国A. Worrall,美国M. Ramosse,Ec R. R. R. Tadesse,OECD/Nea A. Erim,Wna Y.Maheras,美国美国麦卡卢姆,美国麦克马尼曼,美国史密斯,美国A. Worrall,美国M. Ramosse,Ec R. R. R. Tadesse,OECD/Nea A. Erim,Wna Y.
背景和目的:肌肉的机械行为决定了关节功能和人类运动。表征肌肉能力和体内主动力产生的长度范围对于监测肌肉变化至关重要。超声剪切波弹性图(SWE)通过测量组织内的剪切波传播速度来评估局部机械性能,以骨骼肌力学中的一种有希望的非侵入性方法出现[例如。1]。在这项研究中,我们探讨了SWE在检测与年龄有关的肌肉变化和疾病引起的肌肉变化方面的潜力,从而有助于对肌肉行为的全面理解。METHODS Biceps brachii muscle (BB) of healthy young (n=14; age: 28.1±5.1 years) [2] and older individuals (n=14;68.7±5.1 years) [3], and patients with myasthenia gravis (MG) (n=11; 47.6±15.7 years) [4] and facioscapulohumeral muscular dystrophy (FSHD) (n = 8; 42.1±14.0年)在五个肘角的休息和等轴测收缩过程中进行了研究。SWE,肌电图和关节力矩。导致被动条件(图1a),与年轻组相比,老年和MG组的BB弹性模量明显更高(例如老年组的最高可达52.6%)[3,4]。但是,FSHD组没有显着差异。在被动弹性模量与肘部角曲线的指数特征中观察到了实质性变化,这是由于老化和MG引起的。1b)。要利用这些信息作为肌肉力量的指数,必须为健康和患病状况开发肌肉模型。在活动状态下,与年轻人相比,在产生肘部矩时,年龄较大(25.1%),mg(26.5%)和FSHD(15.8%)组略有弱,但产生肘部矩的较弱。与年轻人组相比,在25%MVC时从较旧(20.3%)和FSHD(20.4%)组中测量的BB弹性模量显着降低,而MG组在75%MVC时降低了8.9%(图结论我们的发现表明,SWE能够检测BB肌肉力学的变化,有望在各种环境中监测这些变化,例如在MG的静止或高级活动中评估不同关节位置的肌肉,或在社区环境中评估老化和FSHD的衰老活动。虽然从SWE测量中得出的肌肉的被动和主动行为为理解肌肉适应的见解提供了见解,但它并没有阐明基本机制。此外,这些模型的验证将是向前迈出的至关重要的一步。将进一步探索这些方面,为该领域的未来研究奠定了基础。参考[1] Nordez A.& Hug F. J Appl Physiol 108(5),1389-1394,2010 [2] Zimmer M.等,J。Mech.Behav。生物疾病。垫子。137:105543,2023 [3] Ates F.等,《自然科学报告》,13(1):20062,2023 [4] Zimmer M.等,诊断,13(6),1108,20233ACKNOWLEDGMENTS BMBFTHENTHACKNOWLEDGMENTS THE BMBF-联邦教育部
乳腺癌是女性中最常见的癌症类型。早期诊断对于改善患者的生活质量和增加其生存机会起着根本性的作用。为了使早期诊断对于医疗保健系统更加可靠和可持续,需要具有成本效益、非侵入性、高特异性和高灵敏度特征的诊断工具。SOLUS 项目 [1] 致力于帮助满足这一临床需求。事实上,它旨在开发一种新的多模式断层扫描乳腺系统,该系统嵌入三种不同的非侵入性成像技术:超声成像 (US)、剪切波弹性成像 (SWE) 和时域漫射光学断层扫描 (TD-DOT)。它们各自提供特定的信息,从而有可能提高诊断的特异性。更详细地说,US 将评估病变的存在并提供有关病变形态的先验信息以指导 TD-DOT; SWE 将评估组织硬度,而 TD-DOS 将通过估计光学特性(即吸收率 - µ a - 和减少散射 - µ s ' -)提供有关组织成分(即血液、脂质、胶原蛋白和水浓度 [2])的信息。
SAS 小组本月在斯德哥尔摩举行会议,这是瑞典自 3 月份成为北约正式成员以来首次在瑞典举行的北约委员会级会议。会议于 5 月 14 日至 17 日举行,共有 45 名高级领导人出席,代表 25 个北约国家、一个伙伴国家、一个卓越中心和四个北约组织。会议由瑞典国防研究局 (FOI) 主办。作为北约 STO 的七个科学技术委员会 (STC) 之一,SAS 小组负责监督 50 多个跨国研究项目,涉及政策和战略决策支持、运营决策支持、能力和投资决策支持以及分析能力的开发和维护。在其半年一次的业务会议上,小组成员开会分享正在进行的工作的最新情况并批准对其工作计划的更改。在为期四天的时间里,各国代表讨论了新研究活动的提案,并探讨了研究成果的实际应用和利用。小组批准了七个新的探索团队并认可了五个新的技术团队。专家组还提出了几项建议,要求 STO 研究重点支持北约作战顶点概念中的三项战争发展要务 (WDI):分层弹性、影响力和力量投射、跨域指挥。 以下新的探索小组获得批准(参考编号表明跨专家组感兴趣): SAS-MSG-ET-FP(探索小组)测量网络和电子战环境中软件密集型军事平台的作战效能。承诺。土耳其、美国(通过 SET)、ITA、EST(通过 MSG)、POL(通过 MSG)承诺。拥有 STO 帐户的用户可获得更多信息 [ 此处 ]。 SAS-MSG-ET-FR(探索小组)使用数据分析和数学建模量化国防能力。瑞士、德国、荷兰、挪威、葡萄牙、法国、捷克共和国、加拿大(通过 MSG)、POL(通过 MSG)承诺。 STO 帐户用户可获得更多信息 [ 此处 ]。 SAS-ET-FS(探索团队)多域作战挑战。承诺方为 SWE、ACT、CZE、DEU、ITA。STO 帐户用户可获得更多信息 [ 此处 ]。 SAS-MSG-ET-FT(探索团队)数据驱动的未来弱信号自动检测。承诺方为 GBR、NLD、SWE、TUR、EST(通过 MSG)、IAMD COE(通过 MSG)。STO 帐户用户可获得更多信息 [ 此处 ]。 SAS-ET-FU(探索团队)弱信号评估中的分析偏差。承诺方为 SWE、GBR、TUR、EST(通过 MSG)。STO 帐户用户可获得更多信息 [ 此处 ]。 SAS-MSG-ET-FV(探索团队)新兴和颠覆性技术——战略和社会影响以及未来渠道。英国、美国、芬兰、法国、意大利、瑞典、爱沙尼亚(通过 MSG)、波兰(通过 MSG)承诺。拥有 STO 帐户的用户可在此处获取更多信息。 SAS-ET-FW(探索团队)作战规划、战争游戏和战略方面的假设。德国、PRT、NOR、CZE、GBR、ITA。拥有 STO 帐户的人可以获取更多信息 [ 此处 ]。以下新的技术团队已获董事会批准(预计于 2024 年 7 月成立): SAS-196(研究研讨会)SAS 年度研讨会 - 第 19 届北约运筹学与分析 (OR&A) 会议 2025。ACT、ITA、NLD、NOR、NCIA、GBR、CAN、SWE、DNK、USA 承诺。拥有 STO 帐户的人可以获取更多信息 [ 此处 ]。
艾伦·德·弗雷塔斯(Allan de Freitas),比勒陀利亚大学,扎夫·安东·库尔伯格(Zaf Anton Kullberg),Linkeoping大学,Swe Benjamin Noack,Otto von Guericke University Magdeburg,Ger Bernhard Krach,Airbus,Airbus,Ger Bharanidhar Duraisamy,Daimler Reeake,Daimler Reeaker,Daimler Re-Seear洛克希德·马丁(Lockheed Martin),盖尔·戴维·科马克(Ger David Cormack),莱昂纳多(Leonardo),英国迪特里希·弗朗肯(Dietrich Fraenken),亨索德(Hensoldt)传感器有限公司,格里安·普法夫(Ger Florian Pfaff),斯图加特大学,格尔·弗雷德·达姆(Ger Fred Daum),弗雷德里克·古斯塔夫森(Fredrik Gustafsson)迭戈州立大学,美国,美国西部林基大学,西波西米亚大学,西部波希米亚大学,西部波希米亚大学,西波西米亚大学,塞斯·耶稣·加西亚大学,卡洛斯大学Ger,劳罗·斯尼达罗大学(Lauro Snidaro University of Udine of Udine,Ita Lukas Buntkiel Fkie,Ger Micalis Vrigkas,西马其顿大学,Gre Mohammed Jahangir Uni-Versity,英国英国伯明翰,Murat Kumru,Murat Kumru,沃尔沃,TK Ondrej Straka,西波希米亚大学,Cze Patrick Hohher,Cze Patrick Hohher Streit,Metron,美国,美国Stefano Coraluppi,Str,美国Stephan Reuter,Robert Bosch Gmbh,Ger Thomas Henderson,犹他大学,美国蒂姆·鲍尔,蒂姆·鲍尔,htwg konstanz,gerumut orguner,中东技术大学
BÜ = Bünsdorf +49 4331 35209-… Bw 网络:7523 : EN = 埃克恩弗德北 +49 4351 66-… Bw 网络:7442 ES = 埃克恩弗德南 +49 4351 467-… Bw 网络:7443 KE = 基尔-埃勒贝克+49 431 607-… Bw 网络:7424 KO = 科布伦茨 +49 261 400-… Bw 网络:4424 SWE = 瑞典内克 +49 4308 186-… Bw 网络:7445
• 第一年/第二年/第三年的地面实验 • 由博伊西州立大学的 HP Marshall 执行 • 目标是初步演示如何使用宽带天线进行 SWE 测量 • 使用 Harris IR&D 开发的 2-18 GHz CSA 天线和在此基础上开发的 Alpha Build 天线 • 利用博伊西州立大学现有的 FMCW 雷达成功测量积雪深度和分层 • 演示了使用更窄波束的 alpha build 天线改进的测量结果性能
摘要。复杂的积雪模型,例如Croscus和Snekpack,难以正确模拟北极积雪中的密度和特定表面积(SSA)的预测,这是由于风诱导的压实压实的低估,碱性植被的流动性融合量和水分流动量不足而陈述。To improve the simulation of profiles of density and SSA, parameterisations of snow physical pro- cesses that consider the effect of high wind speeds, the pres- ence of basal vegetation, and alternate thermal conductivity formulations were implemented into an ensemble version of the Soil, Vegetation, and Snow version 2 (SVS2-Crocus) land surface model, creating Arctic SVS2-Crocus.默认和北极SVS2-Crocus的合奏版本是由原位气象数据驱动的,并使用了Snowpack特性(Snow Water Eorsevent,Swe; Depth; Depth; Depth;密度;密度;密度;密度; SSA)在越野谷溪(TVC),Northwest Terrories,加拿大,加拿大,超过32岁,1991年至202年。结果表明,默认和北极SVS2-Crocus都可以模拟SWE的正确幅度(root-Mean-Square误差,RMSE,RMSE,对于两个合奏 - 55 kg m-2)和降雪深度(默认的RMSE - 0.22 M;北极RMSE - 0.18 m)在TVC上与测量值相比。在北极SVS2-Crocus内有效地压实了积雪的表面层,增加了密度,并将RMSE降低了41%(176 kg m-3至103 kg m-3)。