在物理耦合的人机系统研究中,共生的概念被越来越多地提及。然而,对于人机共生的构成方面,却缺乏统一的规范。通过结合不同学科的专业知识,我们阐述了共生作为物理耦合人机系统最高形式的多元视角。共生涉及四个维度:任务、交互、性能和体验。首先,人与机器共同完成一项共同任务,该任务在决策和行动层面上概念化(任务维度)。其次,每个合作伙伴都拥有自己以及其他合作伙伴的意图和对环境的影响的内部表征。这种一致性是互动的核心,构成了双方之间的共生理解,是联合、高度协调和有效行动的基础(互动维度)。第三,共生互动会在合作伙伴的意图识别和互补优势方面产生协同效应,从而提高整体绩效(绩效维度)。第四,共生系统特别改变了用户的体验,如心流、接受度、主体感和体现(体验维度)。这种多元视角灵活而通用,也适用于各种人机场景,有助于弥合不同学科之间的障碍。
在神经形态和神经杂交系统中的研究目前是现代科学和技术中最令人兴奋和有趣的多学科趋势之一。他们整合了神经科学,电子,物理和数学的领域。基于微电子设备和回忆横梁建立人工神经元和神经网络方面的最新进展刺激了朝着一般的人工智能(AI)促进了质的飞跃。在这方面,可以将神经电子学定义为对生命神经系统动机的广泛计算任务的模拟和数字解决方案的合成。基于标准或熟悉组件的模拟神经形态系统是这种方法的特殊性。与基于数字组件的AI加速器相比,它们可以显着提高吞吐量和能量效率。这样的系统模仿了生物神经网络的计算特征,这些计算特征可以解决不理解的任务(通常被描述为“认知”)被传统的AI或高度耗时的。此外,神经电源溶液可以与大脑或活神经元电路集成并形成神经杂交系统。这样的系统可以利用生物细胞的复杂分子机制(例如,记忆和适应),并支持串联人工部分进行的快速计算。这意味着通过与生活系统的互动来塑造的人工网络中计算和学习的实施,最终实施了特定的大脑功能(替换受损的神经回路或增强其功能)。自然和人工系统的共生也可能使为神经形态设备开发新的学习方法是可能的,在这些方法中,活着神经元网络充当“老师”。从基本和应用的角度来看,一个战略性问题是活着神经网络参与合成信息处理。基于合成系统和生物系统之间双向相互作用的真正混合方法的步骤可以带来显着的好处:它们可以导致
摘要为了区分有害,共生和有益微生物,植物依赖于多糖,例如B-葡萄糖,它们是微生物和植物细胞壁的组成部分。将与细胞壁相关的B-葡聚糖聚合物转化为特定结果,该结果影响植物 - 微生物相互作用是由水解和非溶解度B-葡聚糖结合蛋白介导的。这些蛋白质在微生物定殖过程中起着至关重要的作用:它们会影响宿主和微生物细胞壁的组成和弹性,调节B-葡萄糖寡聚体的倍形浓度的稳态,并介导B -glucan的感知和信号传导。本综述概述了B-葡聚糖及其结合蛋白在植物免疫和共生中的双重作用,强调了最新发现,关于B-葡聚糖结合蛋白的作用,是免疫的模量,以及与伴有的共生受体有关的,涉及微生物良好调节的良好调查。
摘要:工业共生 (IS) 和生物经济 (BE) 的概念都侧重于减少对不可再生资源的依赖。然而,这两个参考框架很少被视为实现可持续发展的联合战略的一部分。在这里,我们在有据可查的 IS 案例研究中描述了它们如何相互作用,以确定有机副产品的当前协同模式、它们的局限性以及实现每个框架各自目标的综合举措的有希望的途径。我们首先评估了当前实践中协同作用的性质,以及它们如何促进可持续发展。其次,我们关注农业在这些共生中的作用,因为它在循环生物经济中起着根本性的作用。我们使用三个主要维度来分析我们的案例研究:IS 的出现、协同治理和参与者的偶然性。我们确定了 IS 中有机物质使用的三种主要模式,我们将其称为代谢资源、代谢生物精炼厂和全球生物精炼厂。我们的观察表明,内部和外部从业者都低估了与农业的协同作用。我们得出的结论是,虽然 BE 和 IS 的结合可以增强可持续性,但它需要一个尚未构想的专门实施战略。
共生商业管理研究所(SIBM),浦那共生管理与人力资源发展中心(SCMHRD),浦那共生国际商业研究所(SIIB),浦那共生研究所(SIMS)(SIMS),PUNE SYMBIOSIS SYMBIOSIS SYMBIOSIS SYMBIOSIS SYMBIOSIS SYMENATION的MANDICATIT and PURESSICK MANDICATIT(SIDTM),INSUIK(SIDTIK)共生商业管理研究所(SIBM),班加罗尔共生银行与财务学校(SSBF),浦那共生商业管理研究所(SIBM),Nagpur Symbiosis商业管理研究所(SIBM)(SIBM),海得拉巴Symbiosis Symbiosis Management of Business Management(SIBM),NOIDIA for Iida for Iida Symbiiss(SCMB) (SCMS),Noida共生管理研究中心(SCMS),Nagpur共生管理研究中心(SCMS),班加罗尔共生研究中心(SCMS),海得拉巴
摘要:工业共生 (IS) 和生物经济 (BE) 的概念都侧重于减少对不可再生资源的依赖。然而,这两个参考框架很少被视为实现可持续发展的联合战略的一部分。在这里,我们在有据可查的 IS 案例研究中描述了它们如何相互作用,以确定有机副产品的当前协同模式、它们的局限性以及实现每个框架各自目标的综合举措的有希望的途径。我们首先评估了当前实践中协同作用的性质,以及它们如何促进可持续发展。其次,我们关注农业在这些共生中的作用,因为它在循环生物经济中起着根本性的作用。我们使用三个主要维度来分析我们的案例研究:IS 的出现、协同治理和参与者的偶然性。我们确定了 IS 中有机物质使用的三种主要模式,我们将其称为代谢资源、代谢生物精炼厂和全球生物精炼厂。我们的观察表明,内部和外部从业者都低估了与农业的协同作用。我们得出的结论是,虽然 BE 和 IS 的结合可以增强可持续性,但它需要一个尚未构想的专门实施战略。
在大数据和人工智能的支持下,SYMBIO 塑造了可在欧盟层面复制的高盈利能力和可持续性的共生商业模式,以扩大生物基产品的市场,并提供一个系统来模拟、测量和监测共生及其社会、经济和环境影响。
弧形菌根(AM)共生是地球上最古老,最广泛的相互关系,涉及植物和土壤真菌,属于肾小球菌属。一个复杂的分子,细胞和遗传发展程序可实现伴侣的识别,植物组织中的真菌适应以及激活共生功能,例如磷酸化的转移,以换取碳水化合物和脂质。Am真菌作为古老的义务生物营养,已经发展了策略,以规避植物防御反应,以保证一种亲密而持久的互助。它们是那些能够提高植物应对产生胁迫的能力的根相关的微生物之一,导致菌根引起的抗性(MIR),这可以在不同的宿主和不同攻击者中有效。在这里,我们检查了AM真菌在殖民地定植期间以及MIR在地下和地上有害生物和病原体上的MIR开始和显示MIR时的植物不可分割的基础机制。了解MIR效率频谱及其调节对于将这些有益微生物在可持续作物保护方面的生物技术应用运输至关重要。
珊瑚 - 阿尔加尔共生的代谢动力学从受精到定居点确定1关键的珊瑚能量脆弱性2 3作者和作者分支机构4 5 Ariana S. Huffmyer 1,2,6 *,Kevin H. Wong 3,Wong 3,Danielle M. Becker 2,Emma Strand 4,Emma Strand 4,Tali Mass 5,Tali Scii 6 M.美国华盛顿州华盛顿州华盛顿市9 2美国罗德岛大学生物科学系,美国,美国,美国,金斯敦10 3罗森斯特海洋与大气科学学院,海洋生物学系,海洋生物学系和11个生态学,迈阿密迈阿密大学,佛罗里达州迈阿密大学,美国佛罗里科学,14 Haifa大学,山Carmel,Haifa,Haifa,以色列15 6 LEAD联系Ashuffmyer@gmail.com 16 17 *通讯:Ariana S. Huffmyer,Ashuffmyer@gmail.com 18 19摘要20 21气候变化加速珊瑚礁的下降,并危及22生态系统恢复的招聘必不可少。 成年珊瑚依靠其共生藻类23(共生性藻类)的重要营养交换,但是这种依赖从受精到24种招募的动力和敏感性被认为是被认为的。 我们调查了蒙蒂普拉·马蒂塔(Montipora Capitata)的13个发育阶段的生理,代谢组和25个转录组变化,这是26个夏威夷的珊瑚,该珊瑚在夏威夷26中继承了从父母到鸡蛋的共生体。 我们发现胚胎发育27取决于母体提供的mRNA和脂质,并在游泳幼虫中迅速转移到了共生体衍生的28营养。 共生的密度和光合作用峰一旦游泳至燃料29层幼虫分散。 44Carmel,Haifa,Haifa,以色列15 6 LEAD联系Ashuffmyer@gmail.com 16 17 *通讯:Ariana S. Huffmyer,Ashuffmyer@gmail.com 18 19摘要20 21气候变化加速珊瑚礁的下降,并危及22生态系统恢复的招聘必不可少。成年珊瑚依靠其共生藻类23(共生性藻类)的重要营养交换,但是这种依赖从受精到24种招募的动力和敏感性被认为是被认为的。我们调查了蒙蒂普拉·马蒂塔(Montipora Capitata)的13个发育阶段的生理,代谢组和25个转录组变化,这是26个夏威夷的珊瑚,该珊瑚在夏威夷26中继承了从父母到鸡蛋的共生体。我们发现胚胎发育27取决于母体提供的mRNA和脂质,并在游泳幼虫中迅速转移到了共生体衍生的28营养。共生的密度和光合作用峰一旦游泳至燃料29层幼虫分散。44相反,在30个变形,沉降和钙化期间,呼吸需求显着增加,反映了这种能量密集型形态学31重组。共生植物的增生是由共生铵同化32驱动的,珊瑚宿主中氮代谢几乎没有证据。随着发育的进展,33个宿主会增强氮隔离,调节共生体种群,并确保固定碳的34转移以支持变态,并具有代谢组和转录组35碳水化合物可用性的指标。尽管藻类共生群落群落保持36个稳定,但细菌群落随着个体发育而转移,与Holobiont代谢37重组有关。我们的研究揭示了开发过程中的广泛代谢变化,38越来越依赖共生营养。变形和沉降是针对预测的气候场景的最大39个关键时期,破坏了40个共生的稳定。相对于敏感的41早期生命阶段,这种高度详细的共生营养交换提供了理解和预测营养的基本知识42共生42共生融合,特别是在气候43变化的未来中,珊瑚生存和招募。
摘要 珊瑚的生态成功归功于它们与甲藻 (Symbiodiniaceae) 的共生关系。虽然人们对热应激对这种共生关系的负面影响进行了深入研究,但对热应激如何影响共生关系的开始和共生体特异性的研究较少。在这项工作中,我们使用模型海葵 Exaiptasia diaphana (通常称为 Aiptasia) 及其本地共生体 Breviolum minutum 来研究热应激对藻类对 Aiptasia 的定殖以及藻类细胞表面糖组的影响。热应激导致藻类对 Aiptasia 的定殖减少,这并不是由于藻类运动或氧化应激等混杂变量造成的。利用质谱分析和凝集素染色,我们鉴定出热诱导的聚糖富集(以前发现与自由生活的藻类菌株有关,高甘露糖苷聚糖),同时鉴定出与共生藻类菌株有关的聚糖(半乳糖基化聚糖)减少。我们还鉴定出特定唾液酸聚糖的差异富集,尽管它们在这种共生关系中的作用仍不清楚。我们还讨论了用于分析藻类细胞表面糖组的方法,评估了当前的局限性,并为藻类-珊瑚糖生物学的未来工作提供了建议。总体而言,这项研究深入了解了压力如何通过改变共生生物伙伴的糖组来影响刺胞动物与其藻类共生体之间的共生关系。