太空中的生物反应器可应用于从基础科学到微生物工厂的各个领域。在微重力环境下监测生物反应器在流体、通气、传感器尺寸、样品量以及培养基和培养物的扰动方面都存在挑战。我们介绍了一个小型生物反应器开发案例研究,以及一种监测酵母培养物溶解氧、pH 值和生物量的无创方法。针对系统容量 60 毫升和 10.5 毫升,测试了两种不同的生物反应器配置。对于这两种配置,光学传感器阵列 PreSens SFR vario 都会自动收集数据。使用直径为 7 毫米、固定在采样室底部的化学掺杂点监测培养物中的氧气和 pH 值。当点分别与氧分子和氢离子反应时,会发出 DO 和 pH 的荧光信号。使用以 605 nm 为中心的光反射率来感测生物量。光学阵列有三个光检测器,每个变量一个,它们返回的信号经过预校准和后校准。对于需要氧气和呼吸二氧化碳的异养培养,与光学阵列同轴的中空纤维过滤器可给细胞供氧并去除二氧化碳。这提供了足以维持稳定状态条件下有氧呼吸的氧气水平。比较并讨论了两个生物反应器中酵母代谢的时间序列。生物反应器配置可以很容易地修改为自养培养,从而增强二氧化碳并去除氧气,这是光合藻类培养所必需的。
等 2017;Cao 等 2021;Webberley 等 2022;Zhu 等 2023)。在此背景下,据报道,食用 S. boulardii 可减轻大鼠焦虑样行为以及 LPS 在新奇识别任务中引起的认知障碍(Babaei 等 2022a;Babaei 等 2022b)。我们的结果表明,口服 S. boulardii 后,接受 LPS 治疗的大鼠的空间记忆中断得到改善。虽然这种影响在所有变量中并不具有统计学意义,但逃避行为的减少
摘要:最近,发酵饮料中褪黑激素的存在与酒精发酵过程中的酵母代谢有关。褪黑激素最初被认为是脊椎动物的松果腺的独特产物,在广泛的无脊椎动物,植物,细菌和真菌中也被鉴定出来。这些发现带来了研究褪黑激素在酵母中的功能以及其合成的机制的挑战。但是,提高发酵饮料中这种有趣分子的选择和生产的必要信息是披露代谢途径中涉及的基因。到目前为止,仅提出了一个基因,该基因参与了酿酒酵母中的褪黑激素的产生,PAA1,一种多胺乙酰基转移酶,这是脊椎动物的Aralkylamine N-乙酰基转移酶(AANAT)的同源物。在这项研究中,我们使用不同的蛋白质表达平台评估了不同可能底物的生物转化,例如5-甲氧氨基胺,色氨酸和5-羟色胺,评估了PAA1的体内功能。此外,我们通过结合全局转录组分析和使用强大的生物信息学工具来预测S. cerevisiae中的Aanat的类似域,从而扩展了对新的N-乙酰基转移酶候选的搜索。候选基因的AANAT活性通过大肠杆菌中的过表达来验证,因为奇怪的是,该系统证明了比其自己宿主的酿酒酵母中的过表达更高的差异。我们的结果证实了PAA1具有乙酰化不同的芳基胺的能力,但AANAT活性似乎不是主要的乙酰化活性。我们还证明,PAA1P并不是这种AANAT活性的唯一酶。我们对新基因的搜索在酿酒酵母中检测到HPA2是一种新的芳基烷基胺N-乙酰基转移酶。这是第一个报告,清楚地证明了该酶参与AANAT活性。
酿酒酵母是广泛使用的生物合成系统之一,用于生产各种生物产品,尤其是生物治疗药物和重组蛋白。由于外来基因的表达和插入总是受到酿酒酵母内源性因素和非生产性程序的阻碍,因此已经开发出各种技术来增强转录的强度和效率并促进基因编辑程序。因此,阻碍异源蛋白质分泌的限制已经得到克服。已经开发出负责转录起始和精确调控表达的高效启动子,这些启动子可以通过合成启动子和双启动子表达系统进行精确调控。适当的密码子优化和协调以适应酿酒酵母的基因组密码子丰度有望进一步提高转录和翻译效率。通过将专门设计的信号肽与上游外源基因融合,可以实现高效、准确的转运,从而促进新合成的蛋白质的分泌。除了广泛应用的启动子工程技术和明确的内质网分泌途径机制外,创新的基因组编辑技术 CRISPR/Cas(成簇的规律间隔的短回文重复序列/CRISPR 相关系统)及其衍生工具可以更精确、更有效地进行基因破坏、定点突变和外源基因插入。本综述重点介绍为精确调控酿酒酵母表达系统的代谢而开发的复杂工程技术和新兴遗传技术。
摘要:利用工程原理重新设计生物体是合成生物学 (SynBio) 的目的之一,因此实验方法和 DNA 部件的标准化变得越来越必要。专注于酿酒酵母工程的合成生物学界一直处于这一领域的前沿,构想出了几种被该界广泛采用的特征明确的合成生物学工具包。在本综述中,我们将讨论为酿酒酵母开发的分子方法和工具包对所需标准化工作的贡献。此外,我们还回顾了为新兴非常规酵母物种设计的工具包,包括解脂耶氏酵母 (Yarrowia lipolytica)、Komagataella phaffii 和马克斯克鲁维酵母 (Kluyveromyces marxianus)。毫无疑问,这些工具包中强调的特征化 DNA 部件与标准化组装策略相结合,极大地促进了许多代谢工程和诊断应用等的快速发展。尽管在常见酵母基因组工程中部署合成生物学的能力不断增强,但酵母界在生物自动化等更复杂、更精细的应用中还有很长的路要走。关键词:标准化、特性、生物部件、酵母工具包、合成生物学、自动化
摘要:生物乙醇作为可再生液体燃料具有重要价值,工业生产乙醇过程中甘油和有机酸的过量积累导致乙醇含量降低。本研究利用CRISPR-Cas9方法构建了GPD2、FPS1和ADH2基因缺失的酿酒酵母工程菌株,以提高乙醇产量。通过RNA测序和转录组分析研究基因缺失对基因表达的影响。结果表明,以50g/L葡萄糖为底物,通过同时缺失GPD2、FPS1和ADH2基因构建的酿酒酵母工程菌株SCGFA乙醇产量为23.1g/L,比野生型菌株提高了0.18%,每g葡萄糖的乙醇转化率为0.462g。此外,SCGFA中甘油、乳酸、乙酸、琥珀酸含量与野生型菌株相比分别降低了22.7%、12.7%、8.1%、19.9%、20.7%。京都基因与基因组百科全书(KEGG)分析显示,上调基因富集表明糖酵解、脂肪酸和碳代谢均能影响SCGFA的乙醇生产。因此,该工程菌株SCGFA在生物乙醇生产中具有巨大的潜力。
摘要:Cyprinid疱疹病毒2(CYHV-2)是疱疹病毒造血坏死(HVHN)疾病的病因,在克鲁克斯鲤鱼培养工业中造成严重的经济损失。在这项研究中,通过在酿酒酵母细胞的表面显示ORF132(称为EBY100/PYD1-ORF132),我们评估了针对CYHV-2感染的口服给药的保护性效率。用EBY100/PYD1-ORF132口服疫苗接种后,在粘膜和全身组织中引起了强烈的先天和适应性免疫反应。重要的是,口服疫苗接种为CRUCIAS CARP CYHV-2感染提供了显着的保护,导致相对生存率(RPS)为64%。此外,口服抑制了选定组织中的病毒负荷并减轻了组织学损害。我们的结果表明,在酿酒酵母上的表面播种的ORF132可以用作针对CYHV-2感染的潜在口服疫苗。
使用自私遗传元件(SGE)抽象的拮抗剂进化可以推动宿主抗性的进化。在这里,我们研究了宿主抑制2微米(2 m)质粒,质质寄生虫,它们与萌芽的酵母菌共同发展。我们开发了SCAMPR(用于测量质粒保留的单细胞测定),以测量活细胞中拷贝数异质性和2 m质粒损失。我们确定了缺乏内源性2 M质粒并可重复抑制有丝分裂质粒稳定性的三种酿酒酵母菌株。着眼于Y9 Ragi菌株,我们确定质粒限制是可遗传的和占主导地位的。使用大量分离分析,我们确定了一个高置信度定量特质基因座(QTL),其单个变体MMS21与增加2 m的不稳定性相关。MMS21编码SMC5/6复合物的SUMO E3连接酶和一个重要组成部分,涉及姐妹染色单体内聚,染色体分离和DNA修复。我们的分析利用自然变异来揭示出一种新颖的手段,萌芽的酵母可以克服非常成功的遗传寄生虫。
酿酒酵母NEM1 - Spo7蛋白质磷酸酶复合物脱磷酸化,从而在核/内质网膜上激活PAH1。pah1,一种磷酸磷酸酶,催化磷酸化磷酸化以产生二酰基甘油,是脂质代谢中最高度调节的酶之一。在脂质磷酸酶反应中产生的二酰甘油醇用于合成储存在脂质滴剂中的三酰基甘油。NEM1 - SPO7/PAH1磷酸酶级联反应的破坏会导致过多的生理缺陷。spo7是NEM1 - SPO7复合物的调节亚基,是NEM1催化功能所需的,并且与PAH1的酸性尾巴相互作用。SPO7包含三个保守的同源区(CR1 - 3),对于与NEM1相互作用很重要,但其与PAH1相互作用的区域尚不清楚。Here, by deletion and site-speci fi c mutational analyses of Spo7, we revealed that the C-terminal basic tail (residues 240-259) containing fi ve argi- nine and two lysine residues is important for the Nem1 – Spo7 complex – mediated dephosphorylation of Pah1 and its cellular function (triacylglycerol synthesis, lipid droplet formation, maintenance of核/内质网膜形态和温度升高时的细胞生长)。合成肽的戊二醛交联分析表明,Spo7碱性尾巴与PAH1酸性尾巴相互作用。这项工作使我们对酵母脂质合成中SPO7功能和NEM1 - SPO7/PAH1磷酸酶级联的理解促进了我们的理解。
染色体隔离需要在动型蛋白复合物和有丝分裂纺锤体之间进行协调,这对于两个子细胞之间的遗传分裂至关重要。动力学是一种蛋白质复合物,位于姐妹染色单体的丝粒上。在有丝分裂过程中,观察到的动物学实际上将姐妹染色质朝着用有丝分裂纺锤体的指南伸向细胞的相反两极。有人提出,stu1是一种小动物络合物中的小蛋白,有助于延迟酿酒酵母的萌芽酵母中的后期,直到每个染色体都附着在有丝分裂的纺锤体上。也有人建议Stu1与纺锤体相互作用,并在拉长时同步移动。已经提出,磷酸化可以调节Stu1的功能,并且熔体是其他动力学蛋白中已知的磷酸化位点,因此,在称为sTu1上的称为熔融基序的磷酸化位点上除去苏氨酸氨基酸在Stu1上的磷酸化位点可能会影响姐妹染色体的能力,这可能会导致姐姐的正确性,这可能会使YEAST YEAST降低。熔体是真菌中保存良好的序列,是其他动力学蛋白中的已知磷酸化位点,是STU1的同源物。利用CRISPR-CAS9酶,我们将在发芽的酵母菌Stu1基因中引入磷酸无效突变,以用熔体序列替代苏氨酸719密码子。到目前为止,我们已经成功克隆了含有引导RNA和Cas9酶基因的质粒。我们假设该突变将在Stu1中产生故障,这可能会阻碍其协调纺锤体和动孔附着的能力,并在有丝分裂过程中完全防止染色体分离。下一步将是用质粒和我们的模板DNA转化酵母,该模板DNA代码在Stu1中的719密码子上编码Valine,这种组合将完全激活酵母中的CRISPR CAS CAS 9基因组编辑系统。
