染色体分离需要动粒蛋白复合物和有丝分裂纺锤体的协调,这对于两个子细胞之间的准确遗传分裂至关重要。动粒是一种位于姊妹染色单体着丝粒的蛋白复合物。在有丝分裂过程中,可以观察到动粒实际上是在有丝分裂纺锤体的引导下将姊妹染色单体“引导”到伸长细胞的相反极点。有人提出,动粒复合物中的小蛋白 Stu1 有助于延迟芽殖酵母酿酒酵母的后期,直到每条染色体都附着在有丝分裂纺锤体上。Stu1 与纺锤体相互作用,并在纺锤体伸长时与其同步移动。磷酸化可能在调节 Stu1 功能方面发挥重要作用。在酵母中,MELT 是一种常见的磷酸化位点,因此,去除 Stu1 上 MELT 基序上的苏氨酸氨基酸可能会影响姐妹染色单体正确分离的能力,从而导致酵母活力下降。MELT 是真菌中保存良好的序列,并且已知是 Stu1 其他同源物中的磷酸化位点。利用 CRISPR-Cas9 酶,我们将在芽殖酵母 STU1 基因中引入磷酸化无效突变,以将 MELT 序列中的苏氨酸 719 密码子替换为缬氨酸密码子。我们假设这种突变会导致 Stu1 蛋白发生故障,这可能会阻碍其协调纺锤体和着丝粒附着的能力,并进一步阻止有丝分裂期间染色体分离。
生产菌株的遗传稳定性和代谢稳健性是通过工业规模微生物发酵生产生物基产品的关键标准之一。本文在一种工业乙醇生产菌株酿酒酵母中探索了这些标准,该菌株能够通过染色体整合几个关键基因拷贝来共同发酵 D-木糖和 L-阿拉伯糖与葡萄糖,从而利用这些戊糖 (C5) 糖。在模拟工业环境中长期发酵的受控生物反应器中使用批量顺序培养,发现该菌株早在第 50 代及以后就表现出 D-木糖和 L-阿拉伯糖消耗的显著波动。这些波动似乎与在整个连续批量培养中出现的频率低于 1.5% 的少数低消耗 C5 糖克隆无关,这是由于编码 C5 糖同化酶的转基因拷贝数减少造成的。此外,富含低或高 RAD52 表达的亚群(其表达水平据报道与同源重组率成正比)未表现出 C5 糖同化缺陷,这表明其他机制可能是造成转基因拷贝数变异的原因。总体而言,这项研究强调了工业酵母中存在遗传和代谢不稳定性,尽管在我们的条件下这种不稳定性并不大,但在更恶劣的工业条件下可能会更加有害,从而导致生产性能下降。
甘蔗糖蜜(SCM)是制糖过程中的副产品,总糖浓度约为50%。8 由于含糖量高,SCM已成为中国、巴西等国家生产非食品生物乙醇的主要原料。9 中国每年的SCM产量约为380万吨,是广西等蔗糖主产区乙醇发酵的主要原料。10 利用该原料生产乙醇具有来源集中、成本低的优势,在一定程度上可以解决制糖工业对环境的直接污染问题,将废弃物转化为有用资源,从而有可能提高经济效益。然而,SCM生物乙醇行业仍存在乙醇发酵水平低和环境污染严重的两个难题,这主要是由于缺乏高性能的工业酵母菌株造成的。酿酒酵母是工业生产生物乙醇最常用的微生物。各种研究表明,酿酒酵母菌株从 SCM 发酵中获得的乙醇含量 (EC) 约为 79.25 – 96.29 g L 1 。11,12 巴西最佳工业酿酒酵母菌株为 CAT1 和 PE2,EC 分别为 79.25 g L 1 和 77.35 g L 1 。11,13 此外,苏格兰 M 型野生酿酒酵母的 EC 为 82.17 g L 1 。14
特质酵母处理 - 酵母+酵母菌植物高度(cm)59.16 66.51(+12)分支机构数量植物-1 05.00 06.13(+23)叶植物的数量-1 84.13 90.38(+07)叶(+07)叶(+07)叶(+2)19.83 23.83 23.13(+2工厂)种子植物-1 39.38 52.63(+34)10种种子的重量11.84 13.40(+13)干重植物-1 19.98 22.64(+13)种子产量植物-1 69.66 83.71(+20)个体值是在不同的酵母处理下的八个复制的平均值。值表明从对照处理(-yeast)到(+酵母)的百分比增加。
Prior Mold Mix: Absidia Ramosa, Acrothecium robust, Aspergillus (yellow, smoky, black, nidulants), curvature, epicoccecium, alternaria Botrytis cinerea, Chaetomium, Geotrichum white, gliocladium edges, Helminthosporium, humílmosporium Grisea, Microsporum Audouinii, Monilia spp。 div> microsporum aging, mucus (Mucedo, plumbeus, racemosus), Mycogene, Neurospora (gross, intermediates, Neurospora, Nigrospora oryzae, Papularia, Penicillium, Chrysogenum, expansum, Italian, Market, Roquefortiva), Pullularia, Phoma Destructiva, Phycomyces, Phoma destructiva, Phycomyces Blakesleeanus, Rhodoturola Saccharomyces, Rhodoturola Saccharomyces cerevisiae, Scopulariopsis brevical, Spondylocladium, Sporotrichum pruinosum, stachybotrys of paper, stemphylium, streptomycesgriseus, Syncephalastrum racemosum,四孢子虫,毛植物schoenleinii,trichoderma,verticillium白黑。 div>Prior Mold Mix: Absidia Ramosa, Acrothecium robust, Aspergillus (yellow, smoky, black, nidulants), curvature, epicoccecium, alternaria Botrytis cinerea, Chaetomium, Geotrichum white, gliocladium edges, Helminthosporium, humílmosporium Grisea, Microsporum Audouinii, Monilia spp。 div>microsporum aging, mucus (Mucedo, plumbeus, racemosus), Mycogene, Neurospora (gross, intermediates, Neurospora, Nigrospora oryzae, Papularia, Penicillium, Chrysogenum, expansum, Italian, Market, Roquefortiva), Pullularia, Phoma Destructiva, Phycomyces, Phoma destructiva, Phycomyces Blakesleeanus, Rhodoturola Saccharomyces, Rhodoturola Saccharomyces cerevisiae, Scopulariopsis brevical, Spondylocladium, Sporotrichum pruinosum, stachybotrys of paper, stemphylium, streptomycesgriseus, Syncephalastrum racemosum,四孢子虫,毛植物schoenleinii,trichoderma,verticillium白黑。 div>microsporum aging, mucus (Mucedo, plumbeus, racemosus), Mycogene, Neurospora (gross, intermediates, Neurospora, Nigrospora oryzae, Papularia, Penicillium, Chrysogenum, expansum, Italian, Market, Roquefortiva), Pullularia, Phoma Destructiva, Phycomyces, Phoma destructiva, Phycomyces Blakesleeanus, Rhodoturola Saccharomyces, Rhodoturola Saccharomyces cerevisiae, Scopulariopsis brevical, Spondylocladium, Sporotrichum pruinosum, stachybotrys of paper, stemphylium, streptomycesgriseus, Syncephalastrum racemosum,四孢子虫,毛植物schoenleinii,trichoderma,verticillium白黑。 div>
c . 酿酒酵母 ( Baker's yeast, Saccharomyces cereviciae )
需要高生产率和鲁棒性提高的代谢工程,以使木质纤维素生物量的可持续生物生产乳酸。乳酸是一种重要的商品化学化学物质,例如作为可生物降解聚合物的聚乳酸生产的单体。在这里,使用有理和模型的优化来设计二倍体的木糖发酵酵母酿酒酵母菌株以产生L-乳酸。通过删除ERF2,GPD1和CYB2的多种乳酸脱氢酶编码基因,将代谢通量转向乳酸。使用木糖作为碳源实现了93 g/l的乳酸,其产率为0.84 g/g。增加了木糖利用并减少乙酸合成,还从菌株中删除了PHO13和ALD6。最后,编码丙酮酸激酶的CDC19过表达,导致消耗的0.75 g乳酸/g糖的产率,当使用的底物是一种合成木质纤维素水解培养基时,含有六糖和乙酸和固定剂等合成木质纤维素水解培养基。值得注意的是,建模还为理解氧气在乳酸产生中的影响提供了潜在客户。从木糖中产生高乳酸,在氧气限制下可以通过氧化磷酸化途径减少的通量来解释。在对比度上,较高的氧气水平对乳酸的产生有益于合成水解培养基的乳酸,这可能是耐受抑制剂所需的ATP浓度较高。这项工作突出了酿酒酵母对木质纤维素生物量产生乳酸的潜力。
结果与讨论:为进一步探究糠醛耐受性增强的机制,基于全基因组重测序数据,利用 CRISPR/Cas9 技术构建了 ADR1_1802 突变体。结果表明,当糠醛为 4 g/L 时,ADR1_1802 开始生长的时间与参考菌株(S. cerevisiae CEN.PK113-5D)相比缩短了 20 小时。此外,根据实时荧光定量 PCR 分析,ADR1_1802 突变体中 GRE2 和 ADH6 的转录水平分别增加了 53.69% 和 44.95%。这些发现表明突变体糠醛耐受性的增强是由于糠醛降解加速。重要性:全球可再生碳对于实现“零碳”目标至关重要。从生物质中获得的生物乙醇就是其中之一。为了使生物乙醇的价格与化石燃料具有竞争力,必须提高乙醇产量,因此,应通过酿酒酵母将生物质预处理过程中产生的单糖有效地转化为乙醇。然而,葡萄糖或木糖氧化形成的抑制剂会降低乙醇产量。因此,抑制剂耐受性酿酒酵母对这一过程非常重要。糠醛作为预处理水解液的主要成分之一,对酿酒酵母的生长和乙醇生产有明显的影响。为了获得对糠醛耐受的酿酒酵母并找到潜在机制,本研究应用了适应性实验室进化和CRISPR/Cas9技术
酵母基因组删除项目 (SGDP) 使用五株源自酿酒酵母 S288C 的 Dharmacon 酵母敲除 YKO 亲本菌株,生成了一套几乎完整的酵母开放阅读框 (ORF) 敲除。1 使用基于 PCR 的策略将每个 ORF 替换为 KanMX 盒,该盒包含每个删除的独特标签“条形码”。生成了四个不同的突变体集合:交配类型 MATa 和 MATalpha 的单倍体、非必需基因的纯合二倍体和包含必需和非必需 ORF 的杂合二倍体。存储:
真菌越来越牵涉到经济上重要的水果和蔬菜变质的药物。这项研究的目的是确定负责卷心菜(甘蓝橄榄石)和凹槽南瓜(Telfairia occidentalis)叶片的真菌物种,在尼日利亚港口哈科特港的不同市场中出售。总共分析了50个样品,分析了肉体和南瓜的肉体学,近端和矿物质成分。分别从白菜和南瓜获得了总共170和128个真菌分离株。被宠坏的卷心菜样品的真菌计数范围从5.1×10 5 cfu/g到7.2×10 6 cfu/g/g,来自Rumuokoro和Mile 1市场的样品分别具有最高和最低计数。南瓜的真菌计数范围从2.8×10 4 cfu/g到2.4×10 5 cfu/g,rumuokoro和d/line市场分别产生最高和最低计数。所鉴定的真菌是青霉,尼日尔曲霉,cladosporium sp。,Rhizopus sp。,Aspergillus flavus,fusarium sp。,Trichophyton sp。和Saccharomyces sp。aspergillus sp。的患病率最高(88%),其次是Saccharomyces sp。(84%),penicillium sp。(44%)和根茎sp。(44%)。蔬菜中含有大量的粗蛋白和碳水化合物,而脂肪含量则低。蔬菜富含Na,Mg,Ca,K,Cu和Zn。这项研究表明,隔离的真菌与卷心菜和南瓜叶的变质有关,可以追溯到糟糕的处理和出售市场的卫生状况。