摘要:通常认为开放壳分子石墨烯片段的反应被认为是不希望的分解过程,因为它们导致诸如π-磁性等所需特征的丧失。氧化二聚二聚体表明,这些转化是通过在单个步骤中形成多个键和环制造复杂结构的合成结构的希望。在这里,我们探讨了使用Phena-lenyyl的这种“不希望”反应来构建应变并提供非平面多环芳烃的可行性。为此,我们设计并合成了一个双烯基单元通过双苯基骨架链接的Biradical系统。设计促进了分子内级联反应对螺旋扭曲的鞍形产物,其中一个反应中的关键转换(环锁和环形融合)在一个反应中。通过单晶X射线衍射分析证实了最终的绿吡就产物的负曲率,该植物诱导的曲率通过分辨率通过分辨率的映异构体验证,该螺旋扭转验证了螺旋扭曲,这些向映异构体显示圆形极化的发光和高构型稳定性。
不同1的模拟。5×10 - 4 SV YR - 1套管速率(红色曲线)。这个准平衡带1。5×10 - 4 Sv yr -1是分支
摘要 随着三维集成电路(3D-IC)堆叠的增加,由于不对称马鞍形翘曲的增加,机械应力问题具有挑战性。通过在晶圆背面形成数十微米的沟槽或进行激光退火处理来减少不对称翘曲的各种方法已被提出,但它们的产量低或缺乏改进价值。在本文中,我们提出了一种通过在晶圆背面直接涂覆来降低取决于翘曲形状的机械应力的新方法。所提出的方法是通过使用喷墨打印对感光聚酰亚胺(PSPI)进行图案化以调整表面特性和台阶,然后沉积具有高压应力的四乙基硅酸酯(TEOS)薄膜来释放翘曲。利用ABAQUS有限元分析软件,测量了裸晶圆在工艺前后沿x轴和y轴方向的不对称弯曲变化。通过实验和仿真,在300mm晶圆上部分沉积10µm厚的TEOS膜时,x-y方向的倾斜度约为230µm。此外,利用该工艺,可以根据TEOS膜厚度和面积的变化来释放局部弯曲(翘曲)。这些结果为解决堆叠工艺引起的异常翘曲提供了有效的指导,可应用于先进封装中的3D集成。关键词 翘曲、马鞍形翘曲、NAND、3D NAND、背面图案化
在资产生命周期结束时,资产的停用与提出和建造时一样经过深思熟虑和精心处理。TC Energy 根据艾伯塔省环境与公园 (AEP) 的可再生能源运营保护和复垦指令向 AUC 提交了初步保护和复垦计划。该计划已提交给 AUC 并由其审查。该计划已根据项目生命周期结束时的指令要求进行了更新和执行,以确保设施运营后土地恢复到同等的土地能力。
查询量子评估Oracle(即零订单Oracle)。与Jin等人的经典最新算法相吻合。使用〜o(log 6(n) /ϵ1。< /div> 75)查询梯度甲骨文(即,第一阶甲骨文),我们的量子算法在log n方面更好地在多项式上,并以1 /ϵ表示其复杂性。 从技术上讲,我们的主要贡献是通过模拟量子波方程来代替梯度下降方法中的经典扰动的想法,这构成了量子查询复杂性的改善,并使用log n n因子逃脱了鞍点。 我们还展示了如何使用Jordan引起的量子梯度计算算法来替换具有相同复杂性的量子评估查询的经典梯度查询。 最后,我们还执行了支持我们理论发现的数值实验。使用〜o(log 6(n) /ϵ1。< /div>75)查询梯度甲骨文(即,第一阶甲骨文),我们的量子算法在log n方面更好地在多项式上,并以1 /ϵ表示其复杂性。从技术上讲,我们的主要贡献是通过模拟量子波方程来代替梯度下降方法中的经典扰动的想法,这构成了量子查询复杂性的改善,并使用log n n因子逃脱了鞍点。我们还展示了如何使用Jordan引起的量子梯度计算算法来替换具有相同复杂性的量子评估查询的经典梯度查询。最后,我们还执行了支持我们理论发现的数值实验。
Scholl 反应 1 是一种合成多环芳烃的有效方法,可在一步中形成多个碳 - 碳键。通过自由基阳离子机理 2 进行的 Scholl 反应对底物内电子密度的分布非常敏感,氧化芳族偶联发生在电子密度最高的位置。3 基于这一概念,我们最近证明,通过在底物中引入萘部分可以促进 Scholl 反应,从而产生高度弯曲的多环芳烃。4,5 在此,我们通过展示成功合成前所未有的芳香鞍形物(图 1 中的 1)来扩展这一策略的范围,这是通过在 Scholl 反应的底物中加入萘基来实现的。芳香鞍形物,也称为负弯曲多环芳烃,最近受到越来越多的关注 6,7,原因有两个。首先,它们代表碳黑石中的片段 8