蝴蝶效应这一概念源自混沌理论,强调微小变化如何对复杂系统产生重大且不可预测的影响。在人工智能公平性和偏见的背景下,蝴蝶效应可能源于多种来源,例如算法开发过程中的小偏差或倾斜的数据输入、训练中的鞍点或训练和测试阶段之间数据分布的变化。这些看似微小的改变可能会导致意想不到的、严重的不公平结果,对代表性不足的个人或群体产生不成比例的影响,并延续先前存在的不平等。此外,蝴蝶效应可以放大数据或算法中固有的偏见,加剧反馈回路,并为对抗性攻击创造漏洞。鉴于人工智能系统的复杂性及其社会影响,彻底检查对算法或输入数据的任何更改是否可能产生意想不到的后果至关重要。在本文中,我们设想了算法和经验策略来检测、量化和减轻人工智能系统中的蝴蝶效应,强调了解决这些挑战以促进公平和确保负责任的人工智能发展的重要性。
摘要:本研究探讨了为受伤或截肢后的患者实施智能假肢的可能性。脑机技术允许在大脑和外部设备之间获取和发送信号。然而,上肢假肢是一种相当复杂的工具,因为手本身具有非常复杂的结构,由多个关节组成。最复杂的关节无疑是位于拇指根部的鞍状关节。您需要展示足够的解剖学知识来构建一个易于使用且尽可能类似于人手的假肢。使用合适的软件创建合适的控制系统也很重要,以便与脑机接口轻松协同工作。因此,本工作中提出的解决方案由三部分组成,分别是:Emotiv EPOC + Neuroheadsets,由伺服器和 Arduino UNO 板(带专用软件)组成的控制系统,以及在三维图形程序 Blender 中制作并使用 3D 打印机打印的手假肢模型。这种由大脑信号控制的手部假肢可以帮助截肢后的残疾人和残肢部位神经支配受损的人。
这项工作提出了一种快速的算法BM-Global,用于核总规化的凸和低级别基质优化问题。bm-Global效率通过低成本步骤来降低客观值,从而利用非概念但光滑的居民 - 蒙特利罗(BM)分解,而有效地逃脱了鞍点,并在saddle点上逃脱了鞍点,并以bm的态度来确保快速的核能速率,以确保快速的全局核能核能,以确保全局的核能范围,以确保全局的全局核能,以确保全局的核定速率,以确保界限的全局效率。在其上,多个近端梯度步骤。所提出的方法可以自适应地调整BM分解的等级,并可以通过多种识别工具在优化过程中自动确定BM分解问题的最佳等级。bm-Global因此,与现有矩阵 - 因子化方法相比,在参数调整上花费的时间少得多,这需要详尽的搜索才能查找此最佳等级。在现实世界中的大型建议系统,正规化内核估计和分子构象方面进行了广泛的实验,以确保BM-全球确实可以有效地呈现出潮汐的局部最小值,以使现有的BM的方法与状态级别相比,这是一个范围较高的核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 核 - 均与核能的核能降低了,均匀的核能是 - 正规化程序。根据这项研究,我们在https://www.github.com/leepei/bm-global/上发布了拟议的BM-Global的开源包。
摘要 随着三维集成电路(3D-IC)堆叠的增加,由于不对称马鞍形翘曲的增加,机械应力问题具有挑战性。通过在晶圆背面形成数十微米的沟槽或进行激光退火处理来减少不对称翘曲的各种方法已被提出,但它们的产量低或缺乏改进价值。在本文中,我们提出了一种通过在晶圆背面直接涂覆来降低取决于翘曲形状的机械应力的新方法。所提出的方法是通过使用喷墨打印对感光聚酰亚胺(PSPI)进行图案化以调整表面特性和台阶,然后沉积具有高压应力的四乙基硅酸酯(TEOS)薄膜来释放翘曲。利用ABAQUS有限元分析软件,测量了裸晶圆在工艺前后沿x轴和y轴方向的不对称弯曲变化。通过实验和仿真,在300mm晶圆上部分沉积10µm厚的TEOS膜时,x-y方向的倾斜度约为230µm。此外,利用该工艺,可以根据TEOS膜厚度和面积的变化来释放局部弯曲(翘曲)。这些结果为解决堆叠工艺引起的异常翘曲提供了有效的指导,可应用于先进封装中的3D集成。关键词 翘曲、马鞍形翘曲、NAND、3D NAND、背面图案化
量子达尔文主义以退相干理论为基础,解释了量子宇宙中经典行为的出现。在此框架内,我们证明了关于经典现象学出现的两个重要见解,其中心点是量子不和谐作为关联量子性的量度。首先,我们表明系统和环境的联合状态的所谓分支结构是唯一与零不和谐相容的结构。其次,我们证明,对于小但非零的不和谐以及良好但不完美的退相干,全局纯态的结构必须任意接近分支形式,并且每个分支都表现出低纠缠度。我们的结果显著改进了之前的界限,并强化了现有的证据,即这类分支状态是唯一与量子达尔文主义所描述的经典现象学的出现相容的状态。为什么世界看起来是经典的?尽管在描述我们的量子宇宙方面取得了惊人的成功,但理解量子到经典的转变仍然是一个谜。核心问题源于理解宏观行为(主要是经典行为)从微观量子动力学的特殊性中出现的过程。量子力学发展了一个多世纪后,现在在探索经典极限时提供了大量可用的技术:ℏ → 0 接近(鞍点近似
摘要。一维气候能量平衡模型(1D EBM)是基于地球能量预算的划定全球温度启用的简化气候模型。我们检查了一类一类EBM,该类别作为与相关变量问题的Euler-Lagrange方程相对应的抛物线方程,涵盖了空间不均匀模型,例如与纬度依赖性扰动性的贝甲。。我们还将最小化器的解释为时间依赖性和随机1D EBM的“典型”或“可能”解决方案。然后,我们检查了值函数之间的连接,该值函数代表了客观功能的最小值(在所有温度下),被视为温室气体浓度的函数和全球平均温度(也是温室气体浓度的函数,即分叉图)。特别是,只要有独特的最小化脾气,但全球平均温度持续变化,但是共存的最小化器必须具有不同的全球平均温度。此外,对于温室气体浓度,全球平均温度不稳定,其跳跃必须必须向上上升。我们发现对更一般的空间异质反应 - 扩散模型的适用性也被解散了,对我们的结果的物理解释也是如此。
2021年初,疫情病例不断增加,使得在线交易(市场)更加普遍,市场公司之间的竞争也更加激烈。营销策略竞争可以用博弈论的方法来检验。本研究旨在确定市场中的最佳营销策略,从而增加市场份额。从收益矩阵的数据处理来看,不存在最大值与最小值不相同的鞍点,因此纯策略不是最优策略。此外,使用POM-QM程序处理数据,以确定每个市场的最佳营销策略值。使用混合策略在市场之间进行博弈。在Shopee和Tokopedia的游戏中,最佳博弈值为9%。在第二场游戏Shopee和Lazada中,最佳博弈值为10%。在Shopee和Bukalapak的游戏中,最佳博弈值为8%。在Shopee和Blibli的游戏中,最佳博弈值为16%。在Tokopedia和Lazada的游戏中,最佳博弈值为10%。在Tokopedia和Bukalapak游戏中,最佳游戏价值为9%。在Tokopedia和Blibli游戏中,最佳游戏价值为9%。在Lazada和Bukalapak游戏中,最佳游戏价值为11%。在Lazada和Blibli游戏中,最佳游戏价值为13%。在上一款游戏中,Bukalapak和Blibli,最佳游戏价值为14%。
回答:最大最小和最小最大最优标准基于以下原则:“如果玩家列出所有潜在策略中最坏的结果,那么他将选择与这些最坏结果中最好的结果相对应的策略。最大最小最优标准:最大最小标准涉及选择使可实现的最小收益最大化的替代方案。玩家会查看每个策略或行动方案中最坏的结果,然后从中选择最高的结果。因此,玩家从所有最小利润中选择最大值。因此,最大最小代表最大化你的最小利润。双人游戏中的获胜玩家会采用这种策略。在双人游戏的收益矩阵中,最大最小是行最小值的最大值。最小最大最优标准:最小最大标准涉及选择使可实现的最大收益最小化的替代方案。玩家会查看每个策略或行动方案中最坏的结果,然后从中选择最低的结果。因此,玩家从所有最大损失中选择最小值。因此,minimax 代表最小化你的最大损失。双人游戏中的失败者采用这种策略。在双人游戏的收益矩阵中,Minimax 是最大值列的最小值。4. 什么是鞍点?
摘要自动化对于肉类生产的可持续性至关重要,在肉类生产中,对人类劳动的严重依赖是日益严重的挑战。在这项工作中,一个新型的机器人肉类工厂细胞(MFC)平台为猪肉加工(尤其是屠宰场)进行非传统自动化提供了机会。不是今天的主要选择,而是使用机器人技术和人工智能(AI)来对整个未卫生的猪肉尸体进行复杂的切割和制作操作,并认识到生物学变化和变形。MFC的长期目标是将猪肉尸体作为输入,并产生七个原始产量:火腿,肩膀,马鞍,腹部,整个器官。但是,MFC平台处于连续的开发中 - 因此,本文旨在通过特定用例:肩部去除。根据测试和开发课程的数据(2022年6月至11月)对系统进行评估,总共有34次尝试的肩部移除。还提供了有关MFC处理变异能力的数据,除了成功率和过程计时模型外。还讨论了熟练的屠夫的定性反馈。作者建议,以及平台的技术开发,重要的是考虑将非常规系统与常规同行进行比较的新方法。创新制造系统提供的提供的速度和数量超过了;诸如灵活性,鲁棒性和可扩展性(尤其是经济可伸缩性)之类的特征应该发挥重要作用。未来的立法和标准还必须鼓励创新,而不是阻碍创新的机器人解决方案。
第二次谐波(2Ω)非线性霍尔效应(NLHE)[1,2]可以通过用基于大的基于晶体的同类产品代替古老的基于界面的设备,从而带来逻辑和能量收获技术的新范式[3]。另一方面,NLHE对费米表面的几何形状非常敏感。nhle可以在鞍点[4]和扁平带的位置提供丰富的信息,并直接探测原子上薄的Chern绝缘子中的拓扑相变[5]。在原子薄量子材料的异质结构中获取有关电子特性的信息至关重要,那里的结构对称性工程和热功能可调的复杂的准粒子带共存。在这项工作中,我们在反转对称性的高质量双层石墨烯(BLG)上进行了实验研究,这是掺杂(n)介电位移的函数(d)和温度(t)。我们的结果揭示了不可预见的外在散射和界面应变诱导的内在浆果曲率偶极子(BCD)的二二,其符号和幅度可以通过N和/或D在BLG的低能带边缘附近调节。远离带边缘,观察到NLHE由外部散射占主导地位。BLG中的第二个谐波产生效率V XX(Y)2Ω /VXXΩ2为〜50 V -1,在所有可伸缩材料中最高。此外,v xx(y)2Ω的符号变化的n -d分散轨迹轨迹在BLG中带走了与拓扑相关的LIFSHITTINTIONS。我们的工作将BLG建立为一个高度可调的平台,以生成NLHE,进而探测双层石墨烯中引人入胜的低能电子结构。