约翰·阿洛蒂、1,2 露辛达·阿切尔、2,3 凯姆·IE·斯内尔、2,3 迪尤蒂·库马尔、1,2 雅克·马塞、4 莱恩·斯莱特纳、5 汉斯·沃尔夫、6 乔治·达斯卡拉基斯、7 齐藤茂、8 韦塞尔·甘泽沃特、6 秋秀、19 奥马·米斯特里、10 黛安·法勒、12菲奥诺拉·莫内, 13 张军, 14.15 保罗·T·塞德, 16.17 海伦娜·蒂德, 18 法布里西奥·达·席尔瓦·科斯塔, 19 雅典娜·P·苏卡, 20 梅兰妮·斯穆克, 21 塞尔吉奥·费拉扎尼, 22.23 西尔维娅, 22 普雷莫, 费德里科, 普雷莫 24 里纳特·加贝-本茨夫, 25 奇伊永田,26武田悟, 27 埃文·塞奎拉, 28 奥拉夫·拉佩尔, 29 何塞·吉尔赫姆·塞卡蒂, 30 雷切尔·凯瑟琳·莫里斯, 3 艾哈迈德·巴斯查特, 31 谢尔·萨尔维森, 32, 33 安格斯·卢克, 德斯·史密斯, 34 爱丽丝·朗博尔德, 36 马林·范·格尔德, 37 阿里·库马拉萨米, 1,2 约翰·金德姆, 38 塞波Heinonen, 39 Asma Khalil , 40,41 François Goffinet, 42,43 Sadia Haqnawaz, 44 Javier Zamora, 1,2, 4, Richard Thanga, Rileyna Drati, 3 1,2,46 国际妊娠并发症预测协作网络
讨论主持人:Bruce Zetter 和 Alex Denner 上午 8:00-8:35 – Sabrina Martucci Johnson,Daré Biosciences 首席执行官 优化药物输送,优先考虑女性健康和福祉,扩大治疗选择,并改善结果 上午 8:35-9:10 – Patrick Anquetil,Portal Instruments 首席执行官 通过现代药物输送系统改变患者体验 上午 9:10-9:45 – Shaoyi Jiang,Robert Langer '70 亲朋教授 康奈尔大学 两性离子材料和药物输送系统。 上午 9:45-10:15 - 茶歇 上午 10:15-10:50 – Chad Mirkin,国际纳米技术研究所所长; George B. Rathmann 西北大学化学、化学与生物工程、生物医学工程、材料科学与工程教授 结构纳米医学:通过球形核酸重新利用生命蓝图 10:50 AM-11:25 AM – Hirohide Saito 博士 教授 东京大学定量生物科学研究所;京都大学 iPS 细胞研究与应用中心 / RNA 合成生物学方法编程基因表达和细胞命运 11:25 AM-12:00 PM – Badriprasad (Badri) Ananthanarayanan,Platform Earli, Inc 副总裁 教授旧脂质新技巧:设计 LNP 组合物用于肝外递送 DNA,用于肺癌成像和治疗
John Allotey,1* Lucinda Archer,2 Coomar Dyuti,1 Kym Ie Snell,2 Melanie Smuk,摩尔,10,11 Rachel K Morris,12 Jenny Myers,哈维尔·阿雷纳斯·拉米雷斯(Javier ArenasRamírez 29 Renato t Souza,25 Fiarna Mone,30 Diane Farrar, Anggraini,38 Seonae Yeo,39 Jane West,31 Zamora Javier,1,40 Hema Mistry,41 Richard D Riley
08:45-09:15 mo-1a.1邀请了瞬态的瞬态电子光谱塔哈塔哈拉·瑞科(Tahei Tahara Riken),日本瓦科(Wako),我们进行了短暂的瞬态物种的二维电子光谱,以揭示其特征性的特征性特性,尤其是其结构的构成性质及其独特的构成系统,及其独特的构成构成的构成了构成的构成。09:15 - 09:30 Mo-1A.2 Direct Observation of Nonequilibrium Planarization Dynamics upon the Onset of Excited-State Aromaticity by Ultrafast Time-Domain Raman Spectroscopy Yusuke Yoneda 1,2 , Tomoaki Konishi 3 , Shohei Saito 3 , Hikaru Kuramochi 1,2 1 Institute for Molecular Science, Okazaki, Japan.2日本俄克拉省索肯达高级研究研究所。3日本京都大学科学学院,日本,日本京都大学超快结构动力学与激发态芳香性相关的超快结构动力学通过飞秒时间分解的脉冲刺激性刺激性刺激的拉曼光谱对原型环链驱动剂进行。时间分辨的拉曼数据清楚地捕获了激发态的非平衡弯曲到平面结构变化。09:30 - 09:45 Mo-1A.3 Ultrafast dynamics of a novel perylene diimide dimer: solvent-controlled excitonic coupling Giovanni Bressan 1 , Samuel Penty 2 , Dale Green 1 , Ismael Heisler 3 , Timothy Barendt 2 , Stephen Meech 1 1 University of East Anglia, Norwich, United Kingdom.2英国伯明翰伯明翰大学。3大学联邦政府Do Rio Grande Do Sul,巴西Porto Alegre
1)Suzuki,T。(2021)tRNA修改的扩展世界及其疾病相关性。nat。修订版mol。细胞生物。 ,22,375 - 392。 2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。 febs J.,288,7096 - 7122。 3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y. (2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。 核酸res。 ,46,1565 - 1583。 4) (2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。 J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。细胞生物。,22,375 - 392。2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。febs J.,288,7096 - 7122。3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y.(2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。核酸res。,46,1565 - 1583。4)(2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。J. Clin。投资。,121,3598 - 3608。5)(2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。SCI。adv。,7,EABF3072。6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y.(2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。nucl。酸res。,52,9230 - 9246。7)Blanco,S.,Dietmann,S.,Flores,J.-V.,Hussain,S.,Kutter,C.,Humphreys,P.,Lukk,M.,Lombard,P.,Treps,L.,Popis,M。等。(2014)TRNA的异常甲基化将细胞应激与神经发育疾病联系起来。Embo J.,33,2020 - 2039。
本研究评估了标准审查时间间隔与标准动态的关系。确定审查标准的最佳间隔有助于创造新的产品市场。本研究收集并分析了约 15,000 项有效或已撤销的法律标准的数据,得出了几个结论。首先,标准审查的有效时间间隔因标准所处的技术领域而异。其次,标准的类型(尤其是设计和符号标准)也会显著影响标准审查的有效时间间隔。第三,审查类型(例如修订)与标准的有效期限密切相关。这些发现有助于验证一个数学模型,该模型可以解释标准价值的动态。该模型可以分析标准的价值与应接受的审查类型之间的关系。该模型具有一个临界值,可以统一解释事实上的标准和法律标准在标准动态方面的情况。关键词 :法定标准、有效期限、标准类型、审查类型、动态 JEL :O30、O31、O34、L15。本研究由日本经济产业研究所 (RIETI) 开展。作者还感谢
恶性肿瘤是在各种致瘤因素作用下,细胞生长调控严重紊乱,导致机体细胞异常增生的一类新生生物,常表现为体内异常组织团块。肿瘤可逃避免疫系统的监视,无限制生长,并可经血液、淋巴或植入等途径发生转移(Robert,2013)。恶性肿瘤的治疗仍面临巨大挑战,预计2022年美国将有1918030例新发癌症病例和609360例癌症死亡病例。虽然肺癌发病率逐渐减缓,但乳腺癌和晚期前列腺癌的发病率仍在增加(Siegel and Miller,2022)。根据国家癌症中心的数据,2016年我国恶性肿瘤新发病例为406.40万,其中男性223.43万,女性182.96万,粗发病率和年龄标准化发病率(ASIR)分别为每10万人口293.91和186.46(Zheng等,2022)。目前,传统的治疗方法主要是手术、化疗和放疗,但治疗效果仍然不令人满意,主要原因包括副作用、耐药性和肿瘤细胞对放射线不敏感(Zhang等,2018)。因此,寻找一种高靶向、高效、低毒的治疗方法成为肿瘤治疗研究的重要方向。目前,许多靶向药物已经应用于临床,具有靶向性好、副作用少的优点。靶向治疗是将药物靶向作用于肿瘤生长、分裂的关键基因,如EGFR、HER-2、KRAS、ALK等,从而抑制肿瘤细胞的生长(Rouviere et al.,2015;Saito et al.,2018;Meric-Bernstam et al.,2019)。
Sunday 8 th September 16h30-19h Registration 19h30 Welcome Cocktail Monday 9 th September 8h45 Welcome session Jérémy Couturier and Nicolas Rouhier S-metabolism session 1 (Chair: Stanislav Kopriva) 9h-9h30 Jutta Papenbrock - Sulfotransferases and their role in glucosinolate biosynthesis analyzed in various stress conditions 9h30-10h Jon Mueller - Sulfation of Steroids in Humans - Conferring Directionality 10h-10h20 Patrick Lehr - Sulfur fertilization enhances drought stress response 10h20-10h40 Anna Wawrzynska - LSU proteins enhance sulfate assimilatory pathway flux in Arabidopsis thaliana 10h45 Coffee break 11h10-11h40 Silke Leimkühler-亲核和真核生物11H40-12H10 Ann Cuypers中的tRNA的2-硫代基酶 - 硫酸分配如何影响植物对镉压力的反应:从信号传导到12H10-12H30 DANIELA RISTOVA DANIEILA RISTODA Elucidation of glutathione degradation pathway in Arabidopsis thaliana 13h-14h30 Lunch S-metabolism session 2 (Chair: Luis Romero) 14h45-15h15 Claus Jacob - Harnessing the power of sulfur: redox catalysis, nanotechnology and biomedical innovations 15h15-15h45 Takaaki Akaike - Metabolism and redox signal regulation by supersulfides 15h45-16h05 Shingo Kasamatsu - Development of mass spectrometry-based supersulfidomics and its potential: alternations in supersulfide production during the germination of broccoli sprouts 16h05-16h25 Suvajit Basu - Exploring uncharted territories: new genes for sulfur starvation responses in plants 16h30 Coffee break 17h海报会议全体会议1(主席:Stanislav Kopriva)18H Kazuki Saito-植物硫的35年旅程:个人视角19H30晚餐
1 Zeng, SS 等人。转录因子 SALL4 调节 EpCAM 阳性肝细胞癌的干性。J Hepatol 60 , 127-134,doi:10.1016/j.jhep.2013.08.024 (2014)。2 Yong, KJ 等人。癌胚基因 SALL4 在侵袭性肝细胞癌中的作用。N Engl J Med 368 , 2266-2276,doi:10.1056/NEJMoa1300297 (2013)。3 Li, A. 等人。小鼠和人类髓系白血病发生中的 SALL4/MLL/HOXA9 通路。J Clin Invest 123 , 4195-4207,doi:10.1172/JCI62891 (2013)。 4 Li, A. 等。SALL4 是子宫内膜癌的新靶点。Oncogene 34 , 63-72,doi:10.1038/onc.2013.529 (2015)。5 Yuan, X. 等。SALL4 通过激活 CD44 表达促进胃癌进展。Oncogenesis 5 , e268,doi:10.1038/oncsis.2016.69 (2016)。6 Matyskiela, ME 等。SALL4 作为沙利度胺依赖性 cereblon 底物介导致畸性。Nat Chem Biol 14 , 981-987,doi:10.1038/s41589-018-0129-x (2018)。7 Donovan, KA 等。沙利度胺促进 SALL4 的降解,SALL4 是一种与 Duane Radial Ray 综合征有关的转录因子。Elife 7 , doi:10.7554/eLife.38430 (2018)。8 Dang, CV, Reddy, EP, Shokat, KM 和 Soucek, L. 对“不可用药”的癌症靶点进行药物治疗。Nat Rev Cancer 17 , 502-508, doi:10.1038/nrc.2017.36 (2017)。9 Verdine, GL 和 Walensky, LD 对癌症中不可用药的靶点进行药物治疗的挑战:从针对 BCL-2 家族成员中吸取的经验教训。Clin Cancer Res 13 , 7264-7270, doi:10.1158/1078-0432.Ccr-07-2184 (2007)。 10 Cromm, PM 和 Crews, CM 靶向蛋白质降解:从化学生物学到药物发现。Cell Chem Biol 24 , 1181-1190, doi:10.1016/j.chembiol.2017.05.024 (2017)。11 Tanimura, N.、Saito, M.、Ebisuya, M.、Nishida, E. 和 Ishikawa, F. 干细胞相关因子 Sall4
本书是一本关于航空航天材料的教材,源自 1998 年 9 月 22 日至 25 日在神户研究所举行的第一届牛津-神户材料研讨会上的演讲。神户研究所是一个独立的非营利性组织。它由兵库县神户市和日本各地 100 多家公司的捐款建立。它位于日本神户市,与英国牛津大学圣凯瑟琳学院合作运营。英国神户研究所委员会主席是圣凯瑟琳学院院长 Peter Williams 爵士;神户研究所董事会董事是 Yasutomi Nishizuka 博士;学术主任是牛津大学的 Helen Mardon 博士;财务主管是 Kaizaburo Saito 博士。神户研究所成立的目的是促进教育和研究,促进日本与其他国家之间的相互了解,并为学术界和工业界伙伴之间的合作与交流做出贡献。牛津-神户研讨会是旨在促进英国/欧洲和日本之间国际学术交流的研究研讨会。研讨会的一个主要特点是提供一个世界级的论坛,重点是加强日本和英国/欧洲学术界与工业界之间的联系,并促进对共同感兴趣的及时问题的合作研究。第一次牛津-神户材料研讨会的主题是航空航天材料,重点关注未来 10 年科学和技术的发展。研讨会的联合主席包括东北大学的井上章久教授、牛津大学的 Brian Cantor 教授、Hazel Assender 博士和 Patrick Grant 博士以及神户研究所的斋藤开三郎博士。研讨会协调员是牛津大学的 Pippa Gordon 女士。研讨会由神户研究所、圣凯瑟琳学院、牛津先进材料和复合材料中心、ONERA、道蒂航空螺旋桨公司、石川岛播磨重工业和神户制钢所赞助。研讨会结束后,所有发言者