EdgeCortix SAKURA-I 是台积电 (TSMC) 的 12nm FinFET 协处理器(加速器),为边缘人工智能 (AI) 推理提供一流的计算效率和延迟。它由每秒 40 万亿次操作 (TOPS) 的单核动态神经加速器® (DNA) 知识产权 (IP) 提供支持,这是 EdgeCortix 的专有神经处理引擎,具有内置运行时可重构数据路径,将所有计算引擎连接在一起。DNA 使新的 SAKURA-I AI 协处理器能够以超低延迟同时运行多个深度神经网络模型,同时保持出色的 TOPS 利用率。这一独特属性是提高片上系统的处理速度、能源效率和寿命的关键,可提供卓越的总体拥有成本优势。DNA IP 专门针对流式传输和高分辨率数据推理进行了优化。
抽象的种间嵌合体与人类多能干细胞(PSC)具有巨大的前景,可以产生人性化的动物模型并为移植提供供体器官。然而,该方法目前受到嵌合胚胎最终代表的人类细胞的限制。通过基因编辑供体人类PSC制定了不同的策略来改善嵌合主义。然而,迄今为止,如果可以通过修饰宿主胚胎来增强动物的人类嵌合,则仍然无法探索。利用种间PSC竞争模型,我们在这里发现了视黄酸诱导的基因I(RIG-I)类似受体(RLR)信号传导,一种RNA传感器,在“赢家”细胞中在共培养小鼠与人PSC之间的竞争相互作用中起重要作用。我们发现,DDX58/IFIH1-MAVS-IRF7轴的遗传失活损害了小鼠PSC的“获胜者”状态及其在共培养过程中从进化遥远的物种中超过PSC的能力。此外,通过使用MAV缺乏小鼠胚胎,我们显着改善了未修饰的供体人类细胞存活。基于物种特异性序列的比较转录组分析表明,RNA的接触依赖性人向小鼠转移可能在介导跨物种相互作用中起作用。综上所述,这些发现在细胞竞争期间建立了RNA感应和先天免疫力在“赢家”细胞中的先前未认识的作用,并为修改宿主胚胎而不是供体PSC提供了概念概念,以增强种间嵌合体。与失败者HPSC相反,关于颁布巨型股票的获胜者地位的原因知之甚少。主要文本使用人多能干细胞(HPSC)生成种间嵌合体的技术是研究人类发育的一个有前途的在体内平台,并为动物中生长人体供体器官的潜在来源提供了1,2的潜在来源。尽管在密切相关的物种3,4之间可以实现强大的嵌合体,但在进化上遥远的物种之间产生嵌合体的难度要困难得多。动物中人类细胞(例如,小鼠和猪)的低嵌合体大概是由于早期发育过程中多个异类障碍物所致,其中包括但不限于发育速度的差异,细胞粘附分子的不兼容性,细胞粘附分子的不相容性以及种间细胞竞争。通过遗传抑制人类细胞凋亡6-10,已经制定了几种改善动物胚胎中人类细胞嵌合体的策略。但是,这些策略对于在再生医学中的未来使用是不切实际的,因为改良的基因和途径主要是致癌的。通过编辑宿主胚胎来改善未修饰的供体HPSC的生存和嵌合体是首选的解决方案,但尚未探索。我们以前开发了一种种间PSC共培养系统,并在启动但不幼稚的人和小鼠PSC之间发现了竞争性相互作用,从而通过凋亡通过赢家小鼠epierblast干细胞(MEPISC)消除了失败者HPSC。HPSC中MyD88,p65或p53的遗传灭活可能会克服人鼠PSC竞争,从而改善小鼠胚胎早期的人类细胞存活和嵌合。为此,我们进行了单独培养和共同培养的Mepiscs的RNA测序(RNA-Seq)。H9
未来 10 年将取得哪些进展?从第一台显微镜的开发开始,组织病理学就成为一门主要涉及视觉图像的学科。(请务必阅读本期的“黄金时代”。)诊断仍然依赖于对图像的解读,这些图像色彩绚丽,是我们在实验室工作的标志。随着计算机的日益复杂化,以及成像设备变得更易于操作、质量更好、价格更便宜(请参阅本期的“组织学和数字成像 - 现在和未来的技术”),为会议、肿瘤委员会或教学取出(并重新归档)玻璃片的日子可能已经过去了。玻璃片多久才会被放到博物馆的陈列柜里?