Grafena氧化物(GO)在各种应用中具有非常广泛的潜力,并且其应用之一可以用作光催化剂。从以前的研究中,使用金属氧化物的Go和Go Composies可以降解可以污染水域的液体废物有机染料。由纺织工业活动产生的着色剂之一是Rhodamin B(RHB)。在这项研究中,使用鹰嘴豆修饰方法从石墨进行了GO的合成。使用NH 4 OH溶液通过沉淀法制造了GO/ZnO复合材料,该解决方案得到了超声处理过程的辅助过程,其中Zn(No. 3)2.6H 2 O用作使GO/ZnO复合材料的前体。降水导致的沉积物被中和,然后在70℃加热20小时以获取GO粉末。通过以70℃加热复合沉积物8小时而产生GO/ZnO粉末。XRD样本结果证实形成的GO并不完美。FTIR结果证实,GO样品具有羧基,羰基,羟基和环氧函数组。通过辐射可见的射线和阳光,在RHB上以60至100 ppm的浓度在RHB上测试了两个样品的光疗过程。光催化剂质量在0.01至0.05克的范围内变化,辐照时间为1至5小时。GO/ZnO样品的光有关测试结果显示,60 ppm RHB溶液的脱色百分比达到66.27%,光催化剂质量为0.05克,持续5小时。虽然GO样品在相同的质量和照射时间下将RHB 60 ppm溶液分解为99.97%。
Agustan,Agustan Indonesia Ahmad技术和应用机构,Qurat ul ain Vrije University Amsterdam荷兰荷兰艾哈迈迪,穆罕默德·艾里曼(Mohammad Irimo)/凯尔曼萨(Mohammand Irimo)/凯尔曼萨(Kermanshah)地区大都会伊朗区域伊朗伊朗区域卡利法大学卡塔尔·阿赫塔尔 - 舒斯特(Mariam dlr-pt)德国阿肯巴伯拉(Akinbobola),奥鲁杜顿技术大学,德国弗里贝格德国阿基尼奥拉(Akinyoola)鸟类种群美国阿尔比恩研究所,安瑞典农业科学大学/国家兽医学院瑞典 div>
摘要 AI(人工智能)或智能是一门科学领域,研究对机器进行编程并赋予其像人类一样思考的能力。目前人工智能的发展越来越迅速,甚至各个工作领域都运用了人工智能。自工业革命时代以来,技术发展非常迅速,其中之一就是IoT(物联网)。物联网是一种我们可以控制设备并根据我们的意愿调整它们的技术。目前,物联网在农业领域有着广泛的应用,其中之一就是平菇种植。平菇栽培是目前流行的一种栽培方式,因为平菇受到许多人的喜爱,而且在温度范围为 19 - 30 o C 的城镇和农村社区都很容易种植。然而,在易于种植的背后平菇,有一个让农户感到为难的障碍,就是温度和湿度难以控制,导致平菇产量下降。此项研究的具体目的是解决平菇种植户遇到的问题。本研究利用模糊逻辑制作了一种基于物联网的监测温度、湿度和自动浇水的工具。这项研究的成果是基于物联网的自动温度、湿度和浇水监控系统,使用模糊逻辑可以控制温度和湿度,使平菇仓内的温度保持在理想状态。关键词:平菇栽培、物联网、监控系统
最近的IPCC报道了气候变化压力负发射技术的重要性,例如碳捕获和存储,限制了大气中的CO 2的数量[Masson-Delmotte等,2018]。碳捕获和存储描述了通过在地下中捕获,转移和存储CO 2来限制CO 2从化石燃料燃烧和工业生产中排放的技术。碳捕获和存储是一种直接缓解系统,可以帮助我们从化石燃料过渡到低碳能,但通常情况下,它仅落后于其野心,只有少数商业项目(例如Sleipner,在Salah,Snøhvit和Quest)探索地下CO 2存储[Eiken等,2011]。这些项目至少突出了成功的CO 2存储的三个关键组成部分:(1)基于多个不同数据集的整合,定期进行地质和地质力学现场表征,(2)定期风险评估,(3)捕获,压缩和注射系统的设计和操作[RINGROSE系统[Ringrose et eT eT eT eT eT eT e eT e eT e eT eT eT e eT e eT e eT] eT。我们认为,机器学习的最新进展以及不确定性定量和智能过程控制可以帮助我们完成这些任务,从而提高了地下碳的效率和安全性
中苏门答腊盆地是一个具有巨大石油和天然气潜力的沉积盆地。利用这一潜力所做的努力之一是利用地震方法进行地球物理勘探。地震方法是提供地球地下状况(例如层结构、地质结构、碳氢化合物指标以及储层的物理性质)清晰图像的最优秀方法。本研究采用了地震反演方法和地震属性方法。使用的地震属性是均方根 (RMS) 和包络属性。同时,所采用的地震反演是声阻抗反演(AI)。 RMS 和包络属性有助于绘制地震波的最大振幅,这些地震波反映了地表以下的密度或岩性差异,并指示了具有储层潜力的区域的存在。声阻抗反演可以绘制某一层的声阻抗值,可以有效定量指示岩性、孔隙度和储层特征的差异。均方根 (RMS) 和包络属性显示“FAP”油田 Telisa 地层顶部的亮点区域,而日志数据显示 Telisa 地层中存在碳氢化合物。研究区碳酸盐岩储层声阻抗值分布在15000((Ft/s)*(g/cc))~30000((Ft/s)*(g/cc))范围内。 “FAP”油田碳酸盐岩储层孔隙度为0.18~0.3(V/V),密度为2.2~2.4(g/c3)。关键词:苏门答腊盆地中部,RMS 属性,包络属性,反演
背景:儿童呼吸系统疾病是一个必须解决的问题,因为它对儿童的长期发育和健康有重大影响。肺结核和肺炎是儿童常常患的疾病。出现的症状之一是呼吸急促。儿童呼吸困难可能是由于分泌物积聚、无法自主排出分泌物以及咳嗽反射弱引起的。减轻呼吸困难的一种疗法是薄荷芳香疗法,薄荷中的成分会放松支气管,使呼吸更加顺畅。目的:描述在儿童气道清除功能不全的护理及薄荷芳香疗法的应用方面实施护理实践的效果。方法:本文采用的方法是定性描述,采用案例研究方法并回顾有关薄荷芳香疗法的期刊。结果:根据对3例管理患者的评估结果,3例管理患者均出现呼吸困难、无法咳嗽和发烧等症状。提出的主要护理问题是气道清除无效的主要护理问题。提供的干预措施包括通过监测呼吸模式进行气道管理、监测痰液产生以及协作提供药物和非药物治疗。提供的非药物治疗方法是进行薄荷芳香疗法,持续 3 天,每次给药时间为 15 分钟。结论:对3例患者实施薄荷芳香疗法,可以减少呼吸频率,降低辅助呼吸肌,减少痰液的产生。关键词:儿童、芳香疗法、薄荷、肺炎、肺结核 参考书目:34 (2015-2024)
当前运营的全球项目:世界上最大的CCUS项目是艾伯塔省碳躯干线(ACTL)系统。管道可以运输和存储高达14.5MTPA北美的其他大型项目集中于从Century(8.4 MTPA)(8.4 MTPA)和Shute Creek(6 MTPA)(6 MTPA)等油田增强石油回收率。其他著名的全球示例包括Sliepner(自1996年以来〜0.9 MTPA)和挪威的Snohvit(〜0.7MTPA,2008)。在萨拉赫(〜0.5mtpa,2004-12)阿尔及利亚加拿大边界大坝是第一个从燃煤电站的烟气中捕获二氧化碳的项目。澳大利亚的Gorgon CCS的规定容量为4 MTPA,但由于压力管理控制问题(水注射问题),目前仅注射约1.6 mTPA。MoombaCCS最近开始并成功测试了〜1.7mtpa
社区倾向于改善健康的生活水平,利用草药成分作为功能性食品制剂的积极成分,药物和化妆品的活跃成分倾向于通过增加人口而积极地改善。经常发生并引起农民焦虑的事实,即质量的下降,甚至每种耕种活动的数量,以便越来越受到阻碍功能性食品,药物和化妆品的活性成分。在植物遗传工程领域具有能力或所谓的现代生物技术(重组DNA技术)的挑战和责任正在发展以发展它,即,通过partenocarpy Engineering方法(无生育水果),生物物理学(辐射),需要对有限的现场测试来进行抗衡,因此可以抗过时,因此可以在prock oterge中进行抗衡,从而可以抗过时。通过琼脂糖凝胶结果。 可以作为功能性食品剂量,药物和化妆品(即西红柿)开发的园艺商品植物之一。 最新研究的结果证明,番茄红素形式的番茄含量可以作为漱口水,高血压,高血压,作为配方和唇膏制剂的形式的美容制剂,以及抗氧化剂液体肥皂。 类黄酮生物合成途径,由两种路径组成,即c醇酸酯途径和丙啉酸酯酸。在植物遗传工程领域具有能力或所谓的现代生物技术(重组DNA技术)的挑战和责任正在发展以发展它,即,通过partenocarpy Engineering方法(无生育水果),生物物理学(辐射),需要对有限的现场测试来进行抗衡,因此可以抗过时,因此可以在prock oterge中进行抗衡,从而可以抗过时。通过琼脂糖凝胶结果。可以作为功能性食品剂量,药物和化妆品(即西红柿)开发的园艺商品植物之一。最新研究的结果证明,番茄红素形式的番茄含量可以作为漱口水,高血压,高血压,作为配方和唇膏制剂的形式的美容制剂,以及抗氧化剂液体肥皂。类黄酮生物合成途径,由两种路径组成,即c醇酸酯途径和丙啉酸酯酸。西红柿中包含的番茄红素在抵消自由基中的抗氧化剂来源起着重要作用,因此可以通过代谢工程途径(生物化学)作为功能性食品,药物和化妆品开发为功能性食品,药物和化妆品。
二氧化碳作为温室气体排放(GHG)之一,导致环境,健康和经济损失。 要克服损失,印度尼西亚已提名将工业部门的GHK排放量减少到2050年。 计划减少公司生产的温室气体排放需要量化排放量,以便在当前公司的状况和缓解排放量的可能性中产生的排放量。 水泥行业具有一个GHK排放量化系统,可以计算排放处理原材料,热能消耗和电能的购买。 然后,使用Vensim PLE软件从2021年到2050年进行计算结果,并像往常一样进行业务和减排条件,即减少发射情况,即使用替代原材料,替代燃料,能源效率,废热恢复和碳序列。 PT X排放的定量结果的值低于在全球和印尼水平上的水泥产生排放强度。 关键字:温室气体排放,水泥行业,排放量化,减轻排放,动态系统二氧化碳作为温室气体排放(GHG)之一,导致环境,健康和经济损失。 要克服损失,印度尼西亚已提名将工业部门的GHK排放量减少到2050年。 计划减少公司生产的温室气体排放需要量化排放量,以便在当前公司的状况和缓解排放量的可能性中产生的排放量。 水泥行业具有一个GHK排放量化系统,可以计算排放处理原材料,热能消耗和电能的购买。 然后,使用Vensim PLE软件从2021年到2050年进行计算结果,并像往常一样进行业务和减排条件,即减少发射情况,即使用替代原材料,替代燃料,能源效率,废热恢复和碳序列。 PT X排放的定量结果的值低于在全球和印尼水平上的水泥产生排放强度。 关键字:温室气体排放,水泥行业,排放量化,减轻排放,动态系统二氧化碳作为温室气体排放(GHG)之一,导致环境,健康和经济损失。要克服损失,印度尼西亚已提名将工业部门的GHK排放量减少到2050年。计划减少公司生产的温室气体排放需要量化排放量,以便在当前公司的状况和缓解排放量的可能性中产生的排放量。水泥行业具有一个GHK排放量化系统,可以计算排放处理原材料,热能消耗和电能的购买。然后,使用Vensim PLE软件从2021年到2050年进行计算结果,并像往常一样进行业务和减排条件,即减少发射情况,即使用替代原材料,替代燃料,能源效率,废热恢复和碳序列。PT X排放的定量结果的值低于在全球和印尼水平上的水泥产生排放强度。关键字:温室气体排放,水泥行业,排放量化,减轻排放,动态系统建模投影结果表明,使用此时最佳技术可用的最佳技术,CO 2排放量的大小无法在2050年获得清洁排放的零条件,并通过购买碳序列和经济工具来实现中性碳条件。
博士。 AGUIB Salah 博士(阿尔及利亚 UMB Boumerdes) AMROUCHE Fethia(CDER 阿尔及利亚) 博士ASMA Farid(UMM Tizi-Ouzou,阿尔及利亚)Pr.BALISTROU Mourad(UMB Boumerdes,阿尔及利亚)Pr.BARKAT Belkacem(大学巴特纳,阿尔及利亚) Pr.BELHOUARI Mohamed(大学S. Belabbes,阿尔及利亚) Pr.BELOUCHRANI M. Amine(阿尔及利亚 ENST 阿尔及尔)Pr.BENFRIHA Khaled(巴黎高科艺术与工艺学院)Pr.BEZZAZI Boudjemaa(UMB Boumerdes,阿尔及利亚)Pr.BOLAERS Fabrice (大学法国兰斯)Pr.BOUAFIA Youcef(UMM Tizi-Ouzou,阿尔及利亚)Pr.BOUKHAROUB Tasseda(ESTM 蒙特利尔,加拿大) BOUMEDIENE Faiza(阿尔及尔 USTHB,阿尔及利亚)Pr.BOUZIT Mohamed(大学Oran USTO,阿尔及利亚) Pr.CADOU Jean-Marc(瑞士洛里昂银行,法国)Pr.CHEMANI Halima(阿尔及利亚 UMB Boumerdes)Pr.CHETTIBI Taha(EMP Bordj El Bahri,阿尔及利亚)Dr. DAIM Fatima(ESI 集团,法国巴黎) DAYA El Mostafa(大学洛林-梅斯,法国)Pr.DIZENE Rabah(USTHB 阿尔及尔,阿尔及利亚) DJEBILI Omar(阿尔及利亚 UMB Boumerdes)Pr.DURASANTI Jean Félix(大学巴黎东部地区,法国)Pr.FONTAINE JeanFrançois(法国勃艮第)Pr.GRIEU Stéphane(CNRS-法国佩皮尼昂。)博士。 GRINE Ali(阿尔及利亚 UMB Boumerdes)Pr.HADDAD Moussa(EMP Bordj El Bahri,阿尔及利亚)
