SL NO卷数名称程序1 B151050AR SURYAWASHI SURABHI RAMESH体系结构2 B160566AR KANWALJEET SINGH SINGH 3 B170256AR KARTHIK BABU架构4 B170493AR ANKITH ANKITH ANKITH ANKITH S ANKITH S ANCTERTUT Nishitha建筑8 B180020AR JOSEPH PRAKASH建筑9 B180023AR ADIL BASHEER建筑10 B180025AR K APARNA建筑11 B180030AR MOHAMMED SALEEM建筑12 B180038AR RHAWI RHAWI ABDUL NAHAZIR ARCTERTECT Isabel Lisa Jose体系结构14 B180053AR NOUFA SHABEER体系结构15 B180055AR SIDHARTH SASEENDRAN 16 B180056AR NIRMAL SANJEN体系结构17 B180066AR HILAL AHAMED AHSARED AHSARMED AHSAREM AHAMAHAM AHAMAMAHAM NV ANV ANV ANV ANV ANV ANDENTERTICT 18 B180069AR ARCTICTERTENTERTERTENTINT 0102AR BHARATH KRISHNA K建筑21 B180103AR SATWIK GADANAYAK建筑22 B180107ar Guduru Uday Architecture 23 B180115AR Jayalakshmi S架构24 B180128ar Modem raghavendra kiran raghavendra kiran架构25 B18023333ar体系结构26 B180263AR VISHRUT GOSWAMI体系结构27 B180397ar Lakshmi Srinath体系结构28 B180421ar Sharon Ann Mathew体系结构29 B180450AR TAMIL TAMIL TAMIL VIBHAKAR RC ARTECTERT Dany Krishna建筑33 B181032AR BANOTH ESHWAR CHANDRA建筑34 B181036AR NERELLA MANOJ VAMSI建筑35 B181046AR J JAYAVARMA JAYAVARMA 36 B181054 AR MARIAM MARIAM MARIAM MARIAM LEPCHA建筑37 B181058AR SHANA SHANA SHANA PARVIN ARECTERTER 37 B181066AR Sindhura V架构39 M210063AR ANAND JOSHI城市计划40 M210176AR TS Athira Urban Planning 41 M210308AR ANTARA SABLOK城市计划42 M210309AR 10312ar shabnam khan城市规划46 M210313ar Athira Ashira Ashokan城市规划47 M210314AR SALUNKHE SANKET YUVARAJURAJ URBAN计划48 M210315AR BRAJESH BRAJESH VERMA VERMARBAN VERMARBAN PERMAN PLANIC MURALIDHARAN 生物技术 51 B170817BT NICOLAS IDELSON NHALUGO 生物技术 52 B180082BT IMTHIYAZ AHAMED I 生物技术 53 B180785BT CHINTHAPULA SOWMYA 生物技术
Cao等。 (2022)探讨了南亚经济体能源消耗与环境升级之间的有利联系。 Wu等人,2021年探索表明,可再生能源对减少东盟地区的碳发射有利。 ,尽管Usman等人,2022年探索证实了传统的能源是北极国家环境退化的决定因素之一。 这些问题对发展中的经济体并不令人震惊,由于对有限的资源,对资源的需求无限(Nathaniel et al。,2021),这些经济体已经处理了生态学。 本研究采用更合适的ED测量,目的是回答“绿色创新,绿色贸易和绿色能源生产是否导致无碳经济? ”目前的研究集中于南亚经济,其原因是:首先,该地区对气候变化的直接和间接影响最敏感(Xue等,2021)。 冰融化,海平面上升,森林场,土壤侵蚀和其他气候变化后果都存在于该地区。 在该地区,异常季风的模式也很普遍,这显着造成了环境破坏(Shabbir and Wisdom 2020; Muhammad et al。,2021,2022; Yikun et al。,2021; 2021; Liu et al。等,2022; 其自然资源基础还受到其高度密度和广泛的贫困的紧张。 该研究的方法摘要在第3节中介绍。Cao等。(2022)探讨了南亚经济体能源消耗与环境升级之间的有利联系。Wu等人,2021年探索表明,可再生能源对减少东盟地区的碳发射有利。,尽管Usman等人,2022年探索证实了传统的能源是北极国家环境退化的决定因素之一。这些问题对发展中的经济体并不令人震惊,由于对有限的资源,对资源的需求无限(Nathaniel et al。,2021),这些经济体已经处理了生态学。本研究采用更合适的ED测量,目的是回答“绿色创新,绿色贸易和绿色能源生产是否导致无碳经济?”目前的研究集中于南亚经济,其原因是:首先,该地区对气候变化的直接和间接影响最敏感(Xue等,2021)。冰融化,海平面上升,森林场,土壤侵蚀和其他气候变化后果都存在于该地区。在该地区,异常季风的模式也很普遍,这显着造成了环境破坏(Shabbir and Wisdom 2020; Muhammad et al。,2021,2022; Yikun et al。,2021; 2021; Liu et al。等,2022;其自然资源基础还受到其高度密度和广泛的贫困的紧张。该研究的方法摘要在第3节中介绍。增加的温室气体排放也对该地区的环境环境构成威胁(Nasreen等,2017)。保持所有特征在脑海中,本研究观察到,迫切需要为该地区的环境条件提供解决方案。其余研究的结构如下:第二部分给出了本研究的完整概述。本部分还涵盖了该研究的理论基础和推荐的假设。本节还包括有关数据源和可变操作的信息。该研究的经验发现在第4节中进行了解释。这项研究结束了对第5节中经验发现的回顾。本部分还包括政策建议和未来的研究方向。
规模状态 社会经济状态 电话号码 电子邮件 Bruce Greenhalgh 电话咨询师 588X2 SB WOSB (508) 221-2186 bgreenhalgh@teleinc.com John Boucher 电话咨询师 588X2 SB WOSB (508) 221-2186 jdboucher@teleinc.com Luke Hyder 系统资源管理 (SRM) 6S076 SB (401) 849-2913 hyderl@srminc.net Lawrence Andrusyszyn Synchron, LLC 6JEW1 SB (910) 200-1867 lawrence.andrusyszyn@synchronfed.com Nicholas Dziama Sparton DeLeon Springs (386) 740-5486 nicholas.dziama@sparton.com Timothy Greene Sonalysts 1L297 LB (860) 326-3778 tmgreene@sonalysts.com Mike Girard Serco 022Q2 LB (413) 627-2118 Michael.Girard@serco-na.com Rich Carnevale Serco 022Q2 LB (401) 862-1393 richard.carnevale@serco-na.com Robert Connerney Serco 022Q2 LB (401) 862-2469 robert.connerney@serco-na.com Tim Finnegan Serco 022Q2 LB (401) 743-2337 timothy.finnegan@serco-na.com Molly Donohue Magee SENEDIA 77CTO 非营利 (401) 378-8485 mmagee@senedia.org Elizabeth Goetz-Patridge SEACORP 2V276 LB (401) 324-4140 egoetz@seacorp.com Rebecca Quintal SEACORP 2V276 LB (401) 847-2260 rquintal@seacorp.com John W. Andre 科学研究公司 0D5A6 LB (843) 813-7901 jandre@scires.com Kathy Pazera SAIC 75KV3 LB (401) 341-2727 kathy.g.pazera@saic.com Kevin Sullivan SAIC 75KV3 LB (401) 341-2727 kevin.m.sullivan-2@saic.com Padriac McDermott SAIC 75KV3 LB (757) 376-7380 Padraic.h.mcdermott@saic.com Wayne Thornton SAIC 75KV3 LB (781) 492-3131 Wayne.A.Thornton@saic.com Rose Cornet Saab 1EG52 LB (315) 634-0309 rose.cornet@saabinc.com Cheryl Chapman Rite Solutions 1PSA3 SB VOSB (978) 509-6016 cchapman@rite-solutions.com Jon Tetreault Rite Solutions 1PSA3 SB VOSB (401) 793-6030 jtetreault@rite-solutions.com Josh Lessard Rite Solutions 1PSA3 SB VOSB (774) 627-4220 jlessard@rite-solutions.com Laura Deady Rite Solutions 1PSA3 SB VOSB (401) 847-3399 ldeady@rite-solutions.com Laurie Carter Rite Solutions 1PSA3 SB VOSB (401) 847-3399 lcarter@rite-solutions.com Jessica Gardner RI Commerce N/A (401) 278-9106 jessica.gardner@commerceri.com Chad Lewis RI APEX Accelerator N/A (508) 840-3333 richard.lewis@commerceri.com David Saleem 研究与开发解决方案公司 0KW95 SB SDVOSB (401) 218-3586 d.saleem.rhode@rdsi.com Frank Zannini 研究与开发解决方案公司 0KW95 SB SDVOSB (401) 847-7374 f.zannini.rhode@rdsi.com John Evans 研究与开发Solutions, Inc. 0KW95 SB SDVOSB (401) 847-7374 j.evans.rhode@rdsi.com Matt Ferreira 研究与开发解决方案公司 0KW95 SB SDVOSB (401) 847-7374 m.ferreira.rhode@rdsi.com Katie Lozeau 实时创新 (RTI) 03FH8 SB 小型企业 (508) 397-8807 Katie@rti.com Paul Schmitt 实时创新 (RTI) 03FH8 SB 小型企业 (978) 376-5014 pschmitt@rti.com Robert Council QED Systems 7B572 LB LB 541330;小 336611 (757) 418-1116 rcouncil@qedsysinc.com Danielle Flynn PURVIS Systems 2N954 SB (401) 845-8432 dflynn@purvis.com
护理的未来:将技术整合到患者护理中Marzouq Shayiz Alanazi 1,Sulaiman Saleh Aljamhan 2,Hilah Musaad Marzouq Alharbi 3,Meznah Mohmmed Abdullah Alseafy 4,Wejdan yesef Alshuhytan 5 。1-5*卫生部 - Qassim Health-health-saudi Arabia 6*卫生部 - 麦地那健康集群-Saudi Arabia 7*卫生部 - 贾扎恩健康群 - 苏迪亚阿拉伯人通讯作者:Marzouq Shayiz Alanazi。摘要本研究研究了技术与护理实践及其对患者护理的影响。随着护理响应快速技术进步的发展,本研究探讨了电子健康记录(EHRS),远程医疗和人工智能(AI)等工具如何提高护理效率,患者结果和整体医疗保健。通过混合方法的方法,包括调查和对护士的访谈,研究确定了护理中技术采用的好处和挑战。关键发现表明,尽管技术可显着改善患者的护理和满意度,但诸如系统兼容性问题之类的障碍以及对全面培训的需求仍然存在。该研究以对医疗组织和政策制定者的可行建议结束,以优化技术在护理中的作用,以确保其补充以人为中心的护理方法。关键词:护理实践,技术整合,患者护理,电子健康记录(EHRS),远程医疗,人工智能(AI),医疗保健提供,混合方法研究,患者结果,护理挑战。引言护理正在经历重大的转变,因为技术进步重塑了医疗保健领域。将技术整合到患者护理中,可以彻底改变护理实践,增强患者的结果并提高医疗保健提供的总体效率和质量。本研究探讨了护理的未来,重点关注技术的作用及其对患者护理的影响。通过分析当前的趋势,挑战和机遇,本研究旨在提供有关技术将技术整合到护理实践中以改善患者体验和结果的见解。作为一种充满活力的,以患者为中心的职业,护理不断发展,以满足患者和医疗保健系统的不断变化的需求。快速技术进步为护士提供了创新的工具和系统,从电子健康记录(EHR)到远程医疗,可穿戴设备和人工智能(AI)。这些技术有可能使护理更有效,准确和可访问。但是,将技术纳入护理并非没有挑战。护士必须适应新系统,确保患者隐私和数据安全,并保持以人为本的护理方法。本研究研究了这些复杂性,确定了成功将技术整合到护理护理中的策略和最佳实践。通过利用现实世界中的例子,案例研究和专家见解,本研究对数字时代的护理未来进行了全面分析。它突出了基于技术的护理的好处,同时解决了这种转变的道德,法律和实际考虑。最终,该研究旨在为护理技术中不断增长的技术知识提供贡献,为护士,医疗保健组织和政策制定者提供可行的建议。文献综述了医疗保健技术的发展。医疗保健行业数十年来一直受到技术进步的影响,创新会改变医疗服务及其交付。早期的医疗工具已演变为复杂的设备,高级成像技术和复杂的数字解决方案。
H。Ambreen A,S。Saleem A,S。A. Aldaghfag B,M。Zahid C,S。Noreen C,M。Ishfaq A,M。Yaseen A,*一种自旋 - 呼吸链球化学和铁 - 毛线 - 毛发(软)材料和设备材料和设备实验室,物理学系,Budriculture of Fystricant of Fystricant byrive of Falthricant of Falthican bysalabad 3804040404004040404040404040年404040404040404040年。科学,努拉·宾特·阿卜杜勒拉赫曼公主,P。O。Box 84428,Riyadh 11671,沙特阿拉伯C化学系,农业大学Faisalabad,Faisalabad 38040,巴基斯坦在这项研究中,旋转极化密度功能理论(DFT)实施以预测BE 1-X CR x SE的物理特征,x se x se x se(x = 6.5%),12.5%,12.5%,12.5%。纯BESE化合物的电子特性显示出半导体的行为,但在Cr掺杂bese阐明了所有掺杂浓度的BESE半金属铁磁(HMF)。结果阐明了每CR -ATOM的总磁矩M TOT为4.0028、4.0027、4.0021和4.0002μb,分别为6.25%,12.5%,18.75%,25%的浓度,磁性浓度和磁性主要来自杂质的磁性旋转旋转密度的d- state。此外,还计算了光学参数,以确定掺杂对材料对能量跨度的响应的影响,从0到10 eV。光学研究表明,所研究的系统在紫外线范围内具有最大的吸光度和光导率,并具有最小的反射。总体结果表明,CR掺杂的硒化氏酵母(BESE)是用于旋转和光电设备的有前途的材料。在1983年,De Groot等人观察到了HMF行为。(收到2024年2月29日; 2024年4月29日接受)关键词:Spintronics,DFT,磁密度,光学参数1.从过去几十年来的引入中,对新兴的化合物组进行了密集的实验和理论工作,该化合物被认为是稀磁半导体(DMS)。DMS已在自旋产业和多功能电子设备(光电,气体传感器,现场发射设备,非挥发性存储器设备和紫外线吸收器)中使用[1-6]。DMS基于III – V和II – VI二元化合物,这是铁磁(FM)和半导体特性的组合。DMS是通过在宿主材料矩阵[7]中掺入过渡金属(TM)来实现的,该矩阵[7]由于电子特征的变化而改变了宿主系统的E G [8],从而导致一半金属铁磁材料,导致金属和半导性行为,显示金属和半导向行为。是第一次研究半赫斯勒化合物的带结构,例如PTMNSB和NIMNSB [9]。在理论上和实验上都预测了几位研究人员,HMF在各种材料中的行为,例如钙钛矿化合物LA 0.7 SR 0.7 SR 0.3 MNO 3 [10],Heusler Alloys Co 2 Mnsi [11] [11] v掺杂的MGSE/MGTE [15],Bete [16],Znse [17]和Znte [18]。
全球气候变化对陆地生态系统功能影响巨大,降水模式的波动范围从极端干旱到不适应这些条件的生态系统中的高强度降雨事件。同时,生态系统功能受到生物多样性迅速丧失的威胁(Tilman 等人,2012 年)。气候变化和生物多样性对生态系统功能产生复合影响的可能性凸显了同时考虑这两个因素的必要性。通过更好地了解生物多样性和气候变化对生态系统过程的潜在机制介质,可以更好地预测此类影响。大量研究表明土壤微生物在生态系统功能( Austin 等人, 2014 ; Dubey 等人, 2019 ; Podzikowski 等人, 2024 )和生物多样性维持( Van Der Heijden 等人, 2008 ; Bever 等人, 2015 )中发挥着关键作用,因此很可能成为调节生物多样性和气候变化对生态系统功能的联合影响的候选者。因此,了解土壤微生物组(包括功能不同的微生物群)如何应对气候扰动以及植物多样性和组成的变化至关重要。土壤微生物组已被证明对降水变化高度敏感( Barnard 等人, 2013 ; Engelhardt 等人, 2018 )。研究表明,细菌和真菌(包括真菌病原体(Coulhoun,1973 年;Talley 等人,2002 年;Delavaux 等人,2021 年 a)和丛枝菌根 (AM) 真菌(House and Bever,2018 年)和卵菌(Van West 等人,2003 年;Delavaux 等人,2021 年 a))的丰富度、丰度和组成会随着降水量的变化而变化。虽然细菌和真菌都对降水量的增加作出反应,但研究发现真菌比细菌更能耐受干旱条件(Barnard 等人,2013 年;Engelhardt 等人,2018 年)。同时,一些真菌病原体(例如锈病,Froelich 和 Snow,1986;根腐病 Wyka 等人,2018;Bevacqua 等人,2023)和腐生菌(Delavaux 等人,2021a)被发现在较潮湿的条件下繁殖。此外,陆生卵菌通常是植物病原体,它们在较潮湿的条件下多样性增加(Delavaux 等人,2021a),这可能是它们依赖水的生命周期所预期的(Thines,2018)。因此,这些对降水的不同反应对于微生物组对植物群落的反馈具有重大影响,例如在干旱条件下对 AM 真菌伙伴的依赖增加( Stahl 和 Smith,1984 ; Schultz 等人,2001 ; Auge,2001 ; Marulanda 等人,2003 )以及在潮湿条件下病原体的影响可能更大。因此,确定功能和分类学上不同的土壤微生物群对重大降水变化的相对敏感性,对于理解微生物组驱动的功能如何随着干旱期延长和降雨期加剧而发生变化至关重要。迄今为止,还没有研究测量过微生物功能群对降水实验性改变的广度。土壤微生物组对植物群落组成也高度敏感。植物物种丰富度的提高可以增加微生物多样性(Lamb 等人,2011 年;Burrill 等人,2023 年),因为植物物种的微生物组通常因根系结构(Saleem 等人,2018 年)、根系
由La 3+和Er 3+阳离子联合实施大学,法萨拉巴德大学,38000,巴基斯坦C电气与生物物理学,韩国大学,首尔01897,韩国,韩国,在目前的工作中,稀土共同兴奋剂(RE 3+),LA和ER阳离子,LA和ER阳离子对CD-ZN Spinel Ferrites的物理和介电对cd-ZZN Spinel Ferrites的物理和介电的作用,由olter of-gel-gel-gel-gel-gel-geloso ofero unodocoustoso ofero Ondrouto ofero Ondroposo Ondero Ondero Ondero Ondero Ondero Ondero Ondero Onectose Onect。分别以550℃和750℃的偶尔钙化,分别为2小时8小时。使用XRD,FTIR和电介质测量研究了所获得的样品。XRD粉末模式验证了所有与FD-3M空间基团的所有AS合成铁氧体的尖晶石结构的单相生长。获得的结果表明,晶格常数随着ER 3+浓度的增加而降低,而晶粒尺寸随着ER 3+浓度的增加而显示出增加的行为。FTIR结果揭示了存在两个主要吸收带,即范围405-428 cm -1的低频带和范围523-550 cm -1的高频带,这是尖晶石结构形成的证据。LCR测量用于研究LA 3+和ER 3+的共掺杂对频率响应准备样品的各种介电参数的影响。介电常数和损耗随着ER 3+的掺入而降低,同时观察到AC电导率的增加。观察到的特性表明,准备好的材料是用于在高速微波炉和射频设备中应用的合适候选物。(2024年8月31日收到; 2024年11月14日接受)关键字:La&er共同取代的CD-ZN Ferrites,结构,XRD,FTIR,介电属性1。简介铁氧体材料是由含有铁离子作为其主要成分的氧离子组成的重要类别。它们是陶瓷磁性材料,并发生在各种晶体结构中,但是,尖晶石结构是其中之一,已被广泛研究和报告。尖晶石结构的概念取自MGAL 2 O 4 [1]。该结构由以封闭式FCC形式结构的氧化离子组成,并具有两个类型的间质位点,即四面体和八面体位置。尖晶石铁氧体包含一般式AB 2 O 4,其中“ A”和“ B”代表四面体和八面体位点上的二价和三价金属阳离子[2]。这些材料引起了研究人员的重视研究,以研究其结构,并在各种技术应用中使用电气,介电和磁性。尖晶石铁氧体被归类为软磁性材料,并包含高渗透率[3],良好的化学稳定性,较大的表面积,优势电阻率和低成本[4]和低涡流损失[5],可以使用即将进行的讨论中提到的各种技术轻松地修改和官能化。由于上述属性,这些材料对于记录头,数据存储设备,波浪吸收器,电子设备,高速微波炉和射频设备的制造具有重要意义[6-9]。
铋铁氧体 (BiFeO 3 ) 纳米颗粒 K. SARDAR a 、K. ALI a,* 、S. ALTAF a 、M. SAJJAD a 、B. SALEEM a 、L. AKBAR a 、A. SATTAR b 、Z. ALI a 、S. AHMED a 、U. ELAHI a 、EU HAQ a 、A. YOUNUS aa 纳米光电子研究实验室,费萨拉巴德农业大学物理系,38040 费萨拉巴德,巴基斯坦 b 机械、机电一体化和制造工程系(新校区 KSK),工程技术大学,拉合尔,巴基斯坦 通过溶胶凝胶法合成多铁性铋铁氧化物 (BiFeO 3 ) 纳米颗粒。本研究展示了在 550 ᵒ C 下制备铋铁氧体纳米粒子的方法。在该方法中,硝酸铋 [Bi (NO 3 ) 3 .5H 2 O] 和硝酸铁 [Fe (NO 3 ) 3 .9H 2 O] 被用作起始化学剂。为了克服铋在高温下的挥发性,使用了不同重量百分比的化学品。柠檬酸被用作螯合剂。在 550 ᵒ C 下对样品进行热处理。铋铁氧体纳米粒子表现出明显的铁磁性。随着磁化强度的增加,铋铁氧体纳米粒子的尺寸减小。随着 550 ᵒ C 下化学品浓度的增加,由于重结晶,粒径减小。溶胶凝胶法有助于控制晶体的尺寸。利用 X 射线衍射 (XRD)、扫描电子显微镜 (SEM) 和紫外-可见光对制备的铋铁氧体纳米粒子样品进行表征,以获取有关表面形貌和晶体结构的信息。X 射线衍射结果提供了有关粒度和相位识别的信息。紫外-可见光提供了有关 BiFeO 3 纳米粒子带隙能量的信息。扫描电子显微镜结果提供了不同分辨率下纳米粒子的表面形貌和晶粒尺寸的信息。 (2019 年 9 月 23 日收到;2020 年 1 月 22 日接受) 关键词:纳米粒子、溶胶凝胶、氧化铋铁、带隙 1. 简介 在所有多铁性材料中,铋铁氧体 (BiFeO 3) 是一种在钙钛矿结构中显示反铁磁和铁电序参数共存的材料。它以块体形式早已为人所知。 BiFeO 3 在尼尔温度 (TN =643 ᵒ K) 下表现出反铁磁现象,在居里温度 (T c =1103 ᵒ K) 下表现出铁电现象。研究表明,尽管名称如此,BiFeO 3 并非铁氧体结构,而是钙钛矿结构。在块体中,BiFeO 3 被描述为具有空间群 R 3 C 和菱面体扭曲的铁电钙钛矿。晶格参数为 C hax = 13.87Ȧ、ar = 5.63Ȧ、a hax = 5.58Ȧ 和 α r = 59.350。室温下的最大极化为 90µ/cm 2 至 100µ/cm 2。目前对铋铁氧体的研究表明,如果粒子尺寸大于磁性,则磁性会消失,晶体尺寸越小磁性越强。在纳米粒子中,磁性导致螺旋序被抑制(Manzoor 等人,2015 年)。来自天体化学活动的 Bi 3+ 电子离子对起源于铁电序(T c ∼ 830 ᵒ C)。在此类材料中,d 需要不同的填充状态来转换金属离子在铁电和磁性中的状态(Johari,2011 年)。室温下的铋铁氧体是铁电性的,因为沿着钙钛矿结构的一个方向自发电极化是定向的。铁电态导致铋离子相对于 FeO 6 八面体的较大位移,这导致了一些重要的后果。沿 <111> 方向存在 BFO 铁电极化。它导致八种可能的极化方向。通过使用电场,可以通过切换的可能性来控制磁态