Edwin Blewett 拥有经济学博士学位(UBC 1982),专攻公共财政、计量经济学和微观经济理论。20 世纪 80 年代,他与渔业和海洋部太平洋地区联合被任命为资源经济学主管和鲑鱼增产计划 (SEP) 经济顾问。自 1987 年以来,他一直担任咨询经济学家,完成了 280 多个项目,涉及自然资源 - 渔业、林业、采矿 - 交通、医疗保健、市政规划、非营利组织、能源、本土企业、土地利用规划、体育和娱乐以及北部发展等不同领域。他曾担任不列颠哥伦比亚省最高法院的渔业领域专家和诉讼团队的证人,并被不列颠哥伦比亚省最高法院和加拿大特定索赔法庭认定为渔业经济学专家。
摘要:发展中国家的养禽业仍然面临着鸡伤寒的巨大威胁,这种疾病由鸡沙门氏菌引起,在经济较发达国家已得到较好的控制。除了大型毒力质粒 (85 kb) 表现出的毒力外,鸡沙门氏菌致病岛 2 还通过其 III 型分泌系统 (TTSS) 在介导疾病方面发挥关键作用。TTSS 分泌效应蛋白穿过含有沙门氏菌的液泡,并通过调节囊泡通道介导细菌的内化。在本研究中,使用 CRISPR/Cas9 和 lambda 重组系统通过同源定向修复,成功从本土分离的鸡沙门氏菌基因组中删除编码 III 型分泌系统的候选毒性 ssaU 基因 (~1 kb)。基于 CRISPR/Cas9 的家禽鸡沙门氏菌基因组编辑此前尚未见报道,这可能与其遗传工具效率低下有关。这是首次展示从该细菌基因组中完全进行基于 CRISPR/Cas9 的基因删除的研究。更重要的是,采用家禽实验模型评估了该突变菌株 (∆ ssaU_ S G18) 的毒力潜力,与野生型菌株相比,该突变菌株无法在实验攻毒的鸟类中产生任何死亡率。在我们的攻毒模型中,没有观察到对体重增加的影响,而细菌无法在肠道和肝脏中定植。突变菌株体内毒力的丧失使该系统具有出色的功能,可用于开发针对这种耐药性和致病性细菌的活疫苗。
2022年3月8日收到; 2022年6月23日接受;于2022年9月7日出版作者分支:1个Weifang People Hospital的临床实验室,中国山东省Weifang街151号; 2中国山东省Qingdao Binhai大学临床实验室临床实验室。*通信:Shirong Li,LSR2270@163. COM关键字:1类Integron;沙门氏菌;抗生素抗性;发起人。缩写:氨苄青霉素的放大器; AZ,阿奇霉素; Caz,头孢济; CIP,环丙沙星; CRO,头孢曲松; Inti1,1级整数; Lev,左氧氟沙星; MDR,多药电阻; MIC,最小抑制浓度; PCR,聚合酶链反应; SXT,甲氧苄啶/磺胺甲恶唑。存储库:GenBank No。KY399738.1(样本号 68); GenBank No。 KY399738.1(样本号 77); GenBank No。 fr875297.1(示例号 45); GenBank No。 CP054232.1(样本号 79); GenBank No。 CP033636.1(样本号 35); GenBank No。 EU675686.2(样本号 44)。 001574©2022作者KY399738.1(样本号68); GenBank No。KY399738.1(样本号 77); GenBank No。 fr875297.1(示例号 45); GenBank No。 CP054232.1(样本号 79); GenBank No。 CP033636.1(样本号 35); GenBank No。 EU675686.2(样本号 44)。 001574©2022作者KY399738.1(样本号77); GenBank No。fr875297.1(示例号45); GenBank No。CP054232.1(样本号79); GenBank No。CP033636.1(样本号 35); GenBank No。 EU675686.2(样本号 44)。 001574©2022作者CP033636.1(样本号35); GenBank No。EU675686.2(样本号 44)。 001574©2022作者EU675686.2(样本号44)。001574©2022作者
由Thermo Fisher Scientific Baltics UAB制造的ISO认证,符合ISO 9001和ISO 13485认证质量管理系统。
由Thermo Fisher Scientific Baltics UAB制造的ISO认证,符合ISO 9001和ISO 13485认证质量管理系统。
摘要伤寒毒素是伤寒沙门氏菌(人类伤寒的病因)的重要毒力因子。这种毒素具有不寻常的生物学特性,因为它仅在宿主细胞内时才由伤寒沙门氏菌产生。一旦合成,毒素就会分泌到含有沙门氏菌的液泡腔中,然后通过囊泡载体中间体将其运输到细胞外空间。在这里,我们报告了伤寒毒素分选受体和细胞机制成分的鉴定,这些细胞机制将毒素包装到囊泡载体中并将其输出到细胞外空间。我们发现阳离子非依赖性甘露糖-6-磷酸受体充当伤寒毒素分选受体,并且外壳蛋白 COPII 和 GTPase Sar1 介导其包装到囊泡载体中。伤寒毒素携带者的形成需要伤寒沙门氏菌所含液泡的特定环境,而该环境由其 III 型蛋白分泌系统的特定效应物的活动决定。我们还发现 Rab11B 及其相互作用蛋白 Rip11 控制伤寒毒素携带者的细胞内运输,以及 SNARE 蛋白 VAMP7、SNAP23 和 Syntaxin 4 控制其与质膜的融合。伤寒毒素选择特定的细胞机制将其运输到细胞外空间,这说明了外毒素在细胞内病原体环境中发挥其功能的显著适应性。
摘要 能量耗竭是那些以固定能量预算进行长距离迁徙的动物所关注的重要问题。迁徙的成年弗雷泽河红鲑(Oncorhynchus nerka)停止在海洋中觅食,完全依赖内源能量储存来成功完成随后的淡水迁徙和产卵。大多数关于成年鲑鱼能量利用的研究都集中在迁徙的河流部分,但沿海迁徙可能会耗费大量能量,特别是在气温温暖、潮汐湍急的河口地区。我们沿不列颠哥伦比亚省海岸和弗雷泽河河口用声学三轴加速度计发射器标记和跟踪 38 条成年红鲑,行程超过 200 公里,比较了鲑鱼在沿海、河口和河流地区迁徙的相对能量成本。加速度计输出被转换为特定于温度的氧气消耗率。河流的耗氧率是沿海海洋区域(包括河口)的两倍,这主要是由于游动速度更快。耗氧率还受昼夜周期的影响,中午的能量消耗更高;但是,我们没有发现潮汐周期影响能量消耗的证据。尽管弗雷泽河的耗氧率更高,但运输成本(kJ −1 kg −1 km)在西摩海峡(一个潮汐冲刷较强的狭窄沿海地区)最高,这与之前的研究一致,表明这是一个可能对鲑鱼洄游具有挑战性的区域。总体而言,我们已经证明沿海海洋能量消耗是太平洋鲑鱼产卵洄游能量预算的重要组成部分。
引言 为了通过最大限度地减少身体接触来保护患者和医护人员,COVID-19 疫情极大地加速了许多医疗系统的数字化转型。1 医疗数字化转型的一个关键部分是开发和采用人工智能 (AI) 技术,这被视为国家卫生政策的优先事项。2 3 自 2015 年以来,使用机器学习的医疗器械获得监管部门批准的数量呈指数级增长,4 英国标准目前正在与国际标准一起制定。此外,还有更多的医疗 AI 技术不需要此类批准,因为它们不属于医疗器械的狭义定义。医疗 AI 的范围似乎无穷无尽,在成像和诊断、5 院前分诊、6 护理管理 7 和心理健康等一系列领域都报告了有希望的结果。8 但是,在解释此类研究中的说法时需要谨慎。例如,由于独立的前瞻性评估很少,深度学习算法有效性的证据基础仍然薄弱,且存在很高的偏见风险。9 这尤其成问题,因为这些技术的性能、可用性和安全性只有在现实环境中才能得到可靠的评估,在现实环境中,医疗工作者团队和人工智能技术通过合作和协作提供有意义的服务。10 然而,到目前为止,医疗保健人工智能的人为因素和人体工程学 (HFE) 研究很少。11 需要考虑整个社会技术系统的性能的人工智能设计和前瞻性评估研究,并且证据要求与风险水平成比例。12
该产品已被证明可对2周或以上的健康猪疫苗接种,以针对沙门氏霍乱和鼠伤寒沙门氏菌。在疫苗接种后的14天内,明显表现出鼠伤寒链球菌的免疫力发作。尚未确定免疫持续时间。有关效率和安全数据的更多信息,请访问productData.aphis.usda.gov。指示和剂量:有关完整信息,请参见插入。预防措施:将冷冻的存储在≤ -60°C下。直到使用之前,请勿解冻。使用前摇动。不要与其他产品混合,除了标签上指定的。首先打开时使用整个内容。在屠杀前21天内不要接种疫苗。在发生过敏反应的情况下,给予肾上腺素。该产品尚未在怀孕的动物中进行测试。在人类暴露的情况下,请与医生联系。处置前将未使用的内容灭活。不要与抗生素(包括饲料抗生素)同时使用。建议最低无抗生素的时间为3天,并在疫苗接种后进行3天。用于管理该疫苗的所有材料都必须没有抗菌或消毒剂残留物,以防止失活。
1. 保护和恢复重要的鲑鱼栖息地 ................................................................................................ 5 2. 为鲑鱼和人类投资清洁水基础设施 ................................................................................ 7 3. 纠正鱼类通道障碍,恢复鲑鱼对其历史栖息地的通道 ........................................................ 8 4. 建立气候适应能力 ................................................................................................................ 9 5. 将收获、孵化场和水电与鲑鱼恢复相结合 ............................................................................. 10 6. 解决鲑鱼的掠食性和食物网问题 ............................................................................................. 12 7. 加强各机构和计划之间的承诺和协调 ............................................................................. 12 8. 加强科学、监测和问责制 ............................................................................................. 13