沙门氏菌增菌双倍强度缓冲培养基 用于酸性产品中的沙门氏菌增菌 1 预期用途 沙门氏菌增菌双倍强度缓冲培养基是双倍强度缓冲蛋白胨水的一种特殊配方,专为酸性 pH 值(低于 4.5)的食品和饲料中沙门氏菌的最佳检测而配制和控制。沙门氏菌增菌双倍强度缓冲培养基符合 NF EN ISO 6579-1 标准(沙门氏菌检测、计数和血清分型的水平方法)。该培养基还符合 NF EN ISO 6887-1(初始悬浮液和十进制稀释液制备的一般规则)和 NF EN ISO 6887-4 标准(杂项产品制备的具体规则)。双倍浓度的沙门氏菌富集液可在所需方法中用作双倍浓度的缓冲蛋白胨水。双倍浓度的缓冲沙门氏菌富集液专为经过验证的 IRIS 沙门氏菌 ® 和 SESAME 沙门氏菌测试 ® 方法而配制,也可在所有所需方法中用作双倍浓度的缓冲蛋白胨水。
简介:沙门氏菌是一种可引起食源性感染的细菌,是导致最常见的胃肠道疾病的罪魁祸首。全球范围内出现的耐多药 (MDR) 菌株是一个重大威胁,代表着公共卫生面临的重大挑战。为了降低其发病率,需要采取“同一个健康”方法,而制定新的生物防治方案将有助于防止或消除沙门氏菌的传播。预防措施(例如农场清洁和消毒方案)是减少新鸡群感染和消除设施中残留细菌的关键步骤。然而,耐多药沙门氏菌种(例如 S. Infantis)对传统清洁和消毒方案具有很强的抵抗力,并且在肉鸡农场环境中存活的能力更强。对替代生物防治方法的需求导致人们使用噬菌体或噬菌体(以细菌为目标的病毒)作为有前途的工具。因此,本研究的目的是评估噬菌体作为杀生物剂与 10 个商业家禽农场的清洁和消毒方案相结合对抗婴儿沙门氏菌分离株的功效。
该产品已被证明可对2周或以上的健康猪疫苗接种,以针对沙门氏霍乱和鼠伤寒沙门氏菌。在疫苗接种后的14天内,明显表现出鼠伤寒链球菌的免疫力发作。尚未确定免疫持续时间。有关效率和安全数据的更多信息,请访问productData.aphis.usda.gov。指示和剂量:有关完整信息,请参见插入。预防措施:将冷冻的存储在≤ -60°C下。直到使用之前,请勿解冻。使用前摇动。不要与其他产品混合,除了标签上指定的。首先打开时使用整个内容。在屠杀前21天内不要接种疫苗。在发生过敏反应的情况下,给予肾上腺素。该产品尚未在怀孕的动物中进行测试。在人类暴露的情况下,请与医生联系。处置前将未使用的内容灭活。不要与抗生素(包括饲料抗生素)同时使用。建议最低无抗生素的时间为3天,并在疫苗接种后进行3天。用于管理该疫苗的所有材料都必须没有抗菌或消毒剂残留物,以防止失活。
其他药物和 Vivotif 告诉您的医生、药剂师或护士您正在服用、最近服用过或可能服用任何其他药物或疫苗。这包括非处方药,如草药。这是因为 Vivotif 会影响某些其他药物和疫苗的作用方式。尤其要告诉您的医生、药剂师或护士您是否正在服用: • 抗生素 – 如果在服用抗生素的同时服用 Vivotif,它可能不会起作用。服用 Vivotif 的时间不得早于服用最后一剂抗生素的 3 天。 • 预防疟疾的药物 – 除非您的医生、药剂师或护士另有指示,否则请勿在服用最后一剂 Vivotif 后 3 天内开始服用这些药物。如果您符合上述任何情况,请在服用 Vivotif 前咨询您的医生、药剂师或护士。
非伤寒沙门氏菌 (NTS) 可引起胃肠道感染,这种感染在健康人中通常是自限性的,但可能导致肠外部位的侵袭性感染,从而导致免疫功能低下者出现菌血症和局部全身感染。然而,尚未开发出针对侵袭性 NTS 的预防性疫苗。在这项研究中,我们探索了 1 yjeK 突变菌株作为针对侵袭性 NTS 感染的减毒活疫苗的潜力。YjeK 与 YjeA 结合是延伸因子 P (EF-P) 的翻译后修饰所必需的,而延伸因子 P 对细菌蛋白质合成至关重要。因此,YjeK 和 YjeA 介导的 EF-P 激活功能障碍可能会广泛影响沙门氏菌感染期间的蛋白质表达。缺乏 YjeK 的沙门氏菌在细菌运动能力、抗生素耐药性和毒力方面表现出显著的变化。有趣的是,yjeK 基因的缺失会增加沙门氏菌致病岛 (SPI)-1 基因的表达水平,但会降低 SPI-2 基因的转录水平,从而影响细菌入侵和与宿主细胞接触时的存活能力。在小鼠模型中,与野生型菌株相比,1 yjeK 突变菌株减轻了脾肿大程度以及脾脏和肝脏中的细菌负担。然而,用 1 yjeK 突变体免疫的小鼠在感染后 28 天表现出增强的 Th1 和 Th2 介导的免疫反应,促进了细胞因子和抗体的产生。值得注意的是,施用 1 yjeK 突变菌株会高度诱导 Th2 相关抗体反应。因此,用 1 yjeK 突变菌株接种疫苗可保护 100% 的小鼠免受致命侵袭性沙门氏菌的攻击,并显著减轻器官中的细菌负担。总之,这些结果表明 1 yjeK 突变菌株可以用作有前途的减毒活 NTS 疫苗。
1。预期的用途检测和分离革兰氏阴性肠病原体,尤其是人类临床标本和其他标本中的志贺氏菌和沙门氏菌。革兰氏阴性肠病原体(尤其是志贺氏菌和沙门氏菌)的Shalmella shigella琼脂/XLD琼脂。沙门氏菌琼脂/XLD琼脂的功能是支持症状患者的诊断,表明革兰氏阴性肠病原体,尤其是Shigella属和沙门氏菌的病原体潜在感染。沙门氏菌是食物中毒的一些最常见的病因。这些微生物的致病性从一种血清变化到另一种血清,并且在同一亚种中可能会有所不同。一些血清造成了侵入性疾病,但也有一些造成自限性食物中毒的血清疾病。沙门氏菌肠subsp的最孤立的血清。肠道是S. enteritidis,S。Typhimurium,S。Virchow,S。Hadar或S. iftantis。Shigella属包括四种:S。dysenteriae,s。Flexneri,S。Boydii和S. Sonnei。所有物种都是强制性的病原体,并引起细菌痢疾。2。手术沙门氏菌琼脂的原理胆汁盐,孔雀石绿色和柠檬酸钠的存在抑制了除沙门氏菌和志贺氏菌以外的革兰氏阳性微生物和肠杆菌的生长。由于添加乳糖,肠杆菌的分化是可能的。乳糖发酵细菌会产生酸并形成红色菌落,这是由于中性红色的pH指示剂。相反,乳糖非发酵微生物形成无色菌落。柠檬酸铁是硫化氢产生的指标。沙门氏菌产生硫代硫酸盐还原酶,该酶释放出存在于硫代硫酸钠中的硫化物分子。这些分子与氢离子结合,形成H 2 S,与柠檬酸铵反应。这种反应导致形成沉淀物,可见在细菌菌落中心的黑点。XLD琼脂酵母提取物是培养基中养分的来源。脱氧胆酸钠的存在抑制了革兰氏阳性细菌的生长。由于三个指示系统,细菌的分化是可能的: - 乳糖,木糖和蔗糖与苯酚红(这是pH指示剂) - - 盐酸l-赖氨酸盐和苯酚红色, - 硫代硫酸钠和柠檬酸铁硫酸盐。木糖的发酵降低了培养基的pH值,并使其从红色变为黄色。包括沙门氏菌在内的大多数肠道病原体能够发酵木糖,从而导致培养基的酸化。由于志贺氏菌的细菌是乳糖的非发酵,因此不会产生酸,因此会形成红色菌落。赖氨酸允许将沙门氏菌细菌与其他非致病细菌区分开。一旦木糖耗尽,沙门氏菌细菌在脱羧过程中利用L-赖氨酸,这将培养基的pH水平改变为碱。为防止赖氨酸阳性大肠菌群,乳糖和蔗糖的类似pH水平的类似回归,以产生多余的酸。氯化钠保持渗透平衡。柠檬酸铵是硫化氢生产的指标。沙门氏菌产生硫代硫酸盐还原酶,该酶释放出存在于硫代硫酸钠中的硫化物分子。这些分子与氢离子结合形成H 2 s,与柠檬酸铁反应形成沉淀物,可见在细菌菌落中的黑色中心。产生H 2 S的非致病细菌不脱羧L-赖氨酸。因此,它们产生的酸反应阻止了菌落的变化。
沙门氏菌是一种粮食性的致病细菌,在全球范围内引起沙门氏菌病。此外,沙门氏菌被认为是食品安全和公共卫生的严重问题。几种包括氨基糖苷,四环素,酚和B-乳酰胺的抗菌类别用于治疗沙门氏菌感染。抗生素已经开了数十年,以治疗由人类和动物医疗保健中细菌引起的感染。然而,大量使用抗生素会在包括沙门氏菌在内的几种食源性细菌中产生抗生素耐药性(AR)。此外,沙门氏菌的多药耐药性(MDR)急剧增加。除了MDR沙门氏菌外,全球据报道,除了MDR沙门氏菌,广泛的耐药性(XDR)以及PAN耐药(PDR)沙门氏菌。因此,增加AR正在成为严重的普遍公共卫生危机。沙门氏菌开发了许多机制,以确保其对抗菌剂的生存。针对这些抗生素的最突出的防御机制包括酶促失活,通过EF伏特泵从细胞中排出药物,改变药物的结构以及改变或保护药物靶标。此外,沙门氏菌的生物膜和质粒介导的AR形成,增强了其对各种抗生素的耐药性,使其在医疗保健和食品行业环境中都是充满挑战的病原体。本综述仅着重于提供沙门氏菌中AR机制的详细概述。
1分子生物学系和梅尔微生物研究中心(UCMR)Umeå大学,瑞典,瑞典,2个生物学和医学科学系波尔多,波尔多市中心,国家de la recherche Scientifile(CNR),de la recherche Scientipe(CNR) 5095,法国波尔多,3感染肿瘤科,临床分子生物学研究所,基督教 - 阿尔布雷希特大学,基尔·基尔大学,德国基尔,基尔,德国基尔,4分子生物科学系,温纳 - 格伦研究所,斯德哥尔摩大学,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩,瑞典,医学中心,医学中心,医学中心,福里,医学中心 - 弗朗西斯特大学德国弗莱堡,第6次病理学系,“阿提科恩”大学医院,医学院,国家和卡普迪斯特里大学雅典,雅典,希腊,1分子生物学系和梅尔微生物研究中心(UCMR)Umeå大学,瑞典,瑞典,2个生物学和医学科学系波尔多,波尔多市中心,国家de la recherche Scientifile(CNR),de la recherche Scientipe(CNR) 5095,法国波尔多,3感染肿瘤科,临床分子生物学研究所,基督教 - 阿尔布雷希特大学,基尔·基尔大学,德国基尔,基尔,德国基尔,4分子生物科学系,温纳 - 格伦研究所,斯德哥尔摩大学,斯德哥尔摩大学,斯德哥尔摩,斯德哥尔摩,瑞典,医学中心,医学中心,医学中心,福里,医学中心 - 弗朗西斯特大学德国弗莱堡,第6次病理学系,“阿提科恩”大学医院,医学院,国家和卡普迪斯特里大学雅典,雅典,希腊,
细菌性动脉瘤是一种罕见但严重的并发症,可由全身性细菌感染引起,包括由沙门氏菌引起的感染。这些动脉瘤可能进展迅速,死亡率很高。一名 62 岁的男性,患有控制不佳的 2 型糖尿病,因感染性休克入院。血培养物培养出肠炎沙门氏菌。计算机断层扫描血管造影显示肾下腹主动脉细菌性动脉瘤破裂。尽管进行了抗生素治疗和支持治疗,患者的病情仍迅速恶化,导致死亡,最有可能的原因是动脉瘤破裂。此病例强调了对沙门氏菌血症患者保持警惕的重要性,尤其是高危人群,例如老年人和患有心血管疾病的人。早期成像和及时干预对于改善预后和预防致命并发症(如动脉瘤破裂)至关重要。
摘要 植物天生具有产生多种化学化合物的内在能力,这些化合物可以抵御细菌、真菌、昆虫和大型动物。人类从各种植物中获取这些化合物,并将其用作许多传染性和非传染性疾病的传统疗法。其中一种植物是罗望子 (Tamarind),这是一种常见于非洲的热带树种。许多研究都提取了这种植物的植物化学物质,并证明其具有止泻、抗氧化、抗炎和抗菌作用。在本研究中,我们从罗望子叶中提取了植物化学物质,并测试了它们对大肠杆菌和沙门氏菌的抗菌活性。提取物的抗菌敏感性测试表明,在含有不同浓度提取物的琼脂孔周围存在大量抑制区,表明对测试生物具有阳性抗菌活性。这里获得的结果可能在鉴定和开发可用于治疗细菌感染的药物化合物方面发挥重要作用。关键词:抗菌活性;罗望子;叶提取物;罗望子 引言 在人类发展过程中,植物一直被用作草药,用于治疗多种传染性和非传染性疾病。它们具有多种植物化学物质作为次生代谢产物,可作为植物抵御多种微生物入侵的防御机制。这些植物部分提取物表现出的抗菌活性可能有助于发现新的抗菌化合物来源,这些化合物可能有助于药物开发和治疗由这些微生物引起的疾病。抗生素耐药性是发展中国家大部分地区医疗保健行业面临的主要挑战。多重耐药 (MDR) 菌株在发展中国家的出现和传播