计划 2023 财年估计 社区森林和开放空间 $0 合作土地 - 森林健康管理 $50,000 森林遗产 $0 森林管理 $100,000 景观规模恢复 $0 州消防援助 $60,000 城市和社区林业 $100,000 志愿消防援助 $0 总计 $310,000 注:这笔资金用于州内所有实体,而不仅仅是州林务员办公室。 马绍尔群岛共和国 (RMI) 由 29 个环礁、五个孤岛和约 1,225 个独立岛屿和小岛组成。群岛网络包含 70 平方英里的陆地,位于夏威夷和澳大利亚中间。所有马绍尔群岛的海拔都很低;陆地平均高出海平面 7 英尺。2021 年 7 月,人口估计为 78,831 人。超过三分之二的人口生活在马朱罗和埃贝耶环礁上。马绍尔群岛有五种独特的植被类型:环礁森林、红树林、沿海植被、咸水水生植被(生长在沿海潮滩上的海草)和栽培植被(农林)。自马绍尔人定居以来的数千年间,大部分内陆环礁森林都已转变为农林业。马绍尔的农林业是树木、木本灌木和草本植物的混合体,用于种植食物和其他林产品,尤其是面包果、椰子、露兜树和香蕉。自西方接触以来,许多地区都被管理为椰子种植园(占土地覆盖率的 70%),并且其他物种已被引进并融入农林业(尤其是果树)。自然资源和商业部 (MNRC) 由许多部门和计划组成,包括负责制定和实施林业计划的农业司。马绍尔群岛研究所林务员为农业部工作,并与马绍尔群岛学院和沿海管理咨询小组等各种合作伙伴合作。沿海管理咨询小组履行协调委员会和城市与社区林业委员会的职责。MNRC 与各种合作伙伴和利益相关者合作,提高林业计划实施的效率。计划目标
从细胞中提取 DNA 是分子生物学的一个基本过程,为各种科学研究和应用奠定了基础。本实验报告概述了使用常见实验室材料从香蕉细胞中分离 DNA 的分步过程。通过这个实验,我们旨在展示 DNA 提取的实用方面,同时强调这项基本技术所依据的生物学原理。本实验的主要目标是通过从香蕉细胞中分离 DNA 来直观地观察 DNA,从而了解 DNA 提取背后的基本方法。该过程涉及几个关键步骤:细胞裂解、膜破坏和 DNA 沉淀。首先,用刀将新鲜香蕉切成小块。然后将香蕉片放入研钵中用水捣碎,直到形成浆状。通过将 10 毫升 Trix 与 20 毫升水混合,制备洗涤剂溶液 (Trix),确保气泡形成最少。将捣碎的香蕉混合物和洗涤剂溶液混合并充分混合。将所得混合物通过双层粗棉布过滤到试管中,使用漏斗收集滤液。将冰冷的异丙醇(20-25 毫升)小心地加入装有滤液的试管中,保持轻微倾斜以尽量减少混合。将试管静置 3-5 分钟,在此期间沉淀的 DNA 呈现为管中上升的浑浊白色物质。这个实验提供了 DNA 分离的切实演示,展示了香蕉细胞中可见的 DNA 沉淀。使用洗涤剂和盐进行细胞裂解,结合酒精进行 DNA 沉淀,对于各种生物技术和法医应用(如基因工程和 DNA 指纹识别)至关重要。该过程依赖于分离纯 DNA 以进行进一步分析。在高倍显微镜下,DNA 呈现为扭曲的梯子形状。它包含基因,这些基因掌握着我们身体发育和功能的指令。基因产生执行大多数身体任务的蛋白质。基因变异(称为等位基因)影响头发颜色、眼睛颜色和耳垂形状等特征。这些指令被包装在细胞内,使其太小而无法正常看到或触摸。但是,由于 DNA 存在于每个细胞中,因此可以从生物体中提取大量 DNA。 在这种情况下,我们将使用家用产品从香蕉中提取 DNA。 材料: * 1/2 根去皮的熟香蕉 * 1/2 杯热水 * 1 茶匙盐 * 1/2 茶匙洗洁精 * 可重新密封的拉链袋(夸脱大小) * 提前放在冰箱中的极冷外用酒精(异丙醇) * 咖啡过滤器 * 窄玻璃杯 * 木制搅拌器 分步说明: 1. 将可重新密封的袋子中的香蕉捣碎,直到它像布丁一样。 2. 将热水和盐混合,然后将溶液倒入袋中。 3. 轻轻挤压并混合内容物 30-45 秒。 4.加入洗洁精,轻轻搅拌以避免产生过多泡沫。5. 将咖啡滤纸放在透明玻璃杯中,将杯口固定在杯口周围。6. 将混合物倒入滤纸中,静置直至所有液体滴入杯中。7. 取出并丢弃用过的咖啡滤纸。8. 慢慢地将冷酒精倒入杯边,在香蕉混合物顶部形成 2.5-5 厘米厚的一层。9. 等待八分钟,观察酒精层中形成的气泡和浑浊物质。10. 用木制搅拌器收集浑浊的 DNA 碎片,旋转搅拌器使它们聚集在一起。从香蕉搅拌器中取出的看起来像云的东西实际上是 DNA!有教师和学生包。最近的实验可以通过认识到挤压香蕉可以分解细胞并有助于破坏细胞壁来理解,但为什么要添加其他成分?我们是如何进入细胞并让 DNA 粘在一起的?让我们来思考一下与香蕉混合的三种关键物质:盐水——在添加任何其他物质之前,先将香蕉在盐水中捣碎。这一步是为添加洗洁精做准备,洗洁精有助于释放 DNA。一旦 DNA 被释放,这种盐将帮助 DNA 链粘在一起,形成足够大的团块,以便于观察。洗洁精——洗洁精可以分解将细胞结合在一起的膜,这些膜由脂肪和油等脂质组成。它通过将这些油腻的分子彼此分离来“去除油脂”。加入洗洁精后,它会分解细胞膜并释放 DNA。酒精——DNA 团块可溶于某些液体,但不溶于酒精,因此添加酒精有助于 DNA 团块的形成。图片来源:Ralph Daily 通过 Wikimedia Commons 提供的香蕉和草莓图片。这种盐可以帮助DNA链粘在一起,形成足够大的团块,以便于观察。洗洁精——洗洁精可以分解将细胞结合在一起的膜,这些膜由脂肪和油等脂质组成。它通过将这些油腻的分子彼此分离来“去除油脂”。加入洗洁精后,它会分解细胞膜并释放DNA。酒精——DNA团块可溶于某些液体,但不溶于酒精,因此加入酒精有助于DNA团块的形成。图片来源:Ralph Daily,来自 Wikimedia Commons 的香蕉和草莓图片。这种盐可以帮助DNA链粘在一起,形成足够大的团块,以便于观察。洗洁精——洗洁精可以分解将细胞结合在一起的膜,这些膜由脂肪和油等脂质组成。它通过将这些油腻的分子彼此分离来“去除油脂”。加入洗洁精后,它会分解细胞膜并释放DNA。酒精——DNA团块可溶于某些液体,但不溶于酒精,因此加入酒精有助于DNA团块的形成。图片来源:Ralph Daily,来自 Wikimedia Commons 的香蕉和草莓图片。
我们的联合声音回应了反对气候影响的强大信息,体现了对Malampa及其他地区的韧性和可持续增长的共同愿景。“气候变化对包括Malampa省在内的瓦努阿图有深远的影响,其影响变得更加明显和威胁。我们目睹了海平面上升,更激烈的风暴和不可预测的降雨模式。这些变化已经对我们的沿海地区造成了损失,在我们的沿海地区,侵蚀和洪水正在破坏基础设施,并通过盐水入侵污染了淡水。热带风暴的严重程度日益严重,导致房屋和财产破坏,取代家庭,并使我们的社区脆弱。,随着降雨模式的改变带来了严重的干旱和洪水。我们的当地生态系统,例如珊瑚礁和红树林,对我们的生物多样性和渔业至关重要,也正在遭受苦难,不仅威胁着环境,而且威胁着许多人的生计。今年,我们面临着较高的温度和不稳定的降雨,这使这些已经紧迫的问题恶化了。社区承受着压力,环境正在努力应对,进一步强调了迫切需要进行全面适应策略。在这项为期五天的气候变化意识活动中,气候变化部(DOCC)员工不懈地努力将Malekula社区的影响直接与气候变化联系起来。一起,我们可以建立韧性并维护我们的未来。”我们的讨论重点是确定社区可以采用的实际适应和缓解实践。这样做,我们使参与者能够真正了解气候变化如何重塑其环境,生计和生活方式。至关重要的是,我们必须继续支持这些努力,并鼓励基于本地的,基于自然的解决方案,例如我们促进的植树活动,以应对面临的挑战。该部还向来自Malampa省政府的利益相关者表示感谢气候变化部的工作人员良好的合作和团队合作。插入气候变化部纳尔逊·卡洛代理部
I.利益说明1。我以我作为联合国特别报告员的身份提交了与人权委员会任命的安全,清洁,健康和可持续的环境有关的问题,该问题与人权委员会任命为2018年8月1日,根据HRC决议37/8。1 2。我还是加拿大不列颠哥伦比亚大学的教授,该教授在资源,环境与可持续性研究所以及公共政策与全球事务学院共同任命。我曾担任环境律师已有25年以上的时间,曾担任许多有关环境政策,宪法和人权的政府顾问,并出版了9本书以及100多篇文章,报告和书籍章节。我在比较宪法方面具有广泛的专业知识,包括书籍(例如环境权利革命,2012年),文章(例如健康环境的宪法权利,2012年)和书籍章节(例如变革催化剂:2019年,评估实施健康环境权的40年经验)。3。4。2019年10月,我向人权委员会介绍了气候变化对人权和相关国家义务的影响,特别着重于安全气候的权利,这是健康环境权利的组成部分。2该报告描述了气候变化对许多人权的享受,包括生命权,健康权,儿童权利和健康环境权的负面影响。5。3简而言之,我作为特殊报告员的任务是: - 与享受安全,清洁,健康和可持续环境有关的研究人权义务; - 提出与在环境政策制定中使用人权有关的最佳实践; - 确定与享受安全,清洁,健康和可持续环境有关的人权义务充分实现人权义务的挑战和障碍; - 每年向联合国人权委员会和联合国大会报告上述工作结果每年报告。在我作为特殊报告的工作中,我听到了那些已经经历过气候变化影响的人有力的第一手证词变化的天气模式。
藻类品种包括海藻,池塘浮渣和海带都来自同一个家庭。这些生物的植物样特征如叶绿体,可以进行光合作用的LIK植物。有些藻类还鞭毛和中心藻,在饲料习惯方面,它们与动物更相似。藻类范围从微小的单细胞生物到大型多细胞类型,它们生活在各种环境中,包括盐水,淡水,湿土或潮湿的岩石。较大的藻类物种通常被称为简单的水生植物。硅藻是盐水环境中最丰富的浮游生物类型,人数超过金棕色藻类。没有细胞壁,硅藻具有称为浮雕的二氧化硅壳,其形状和结构取决于物种。金棕色藻类虽然不太常见,但被称为纳米膨胀,仅由50微米的细胞组成。消防藻类,也称为鞭毛藻,是单细胞的,当它们大量盛开时会引起红潮,在海洋中以红色的色调出现。某些吡咯烷物种是生物发光的,导致水在夜间发光。鞭毛藻是有毒的,会产生可破坏人和其他生物体肌肉功能的神经毒素。与鞭毛藻类似的Cryptomonads也可能会产生有害的藻华,将水变深褐色或红色。netrium desmid是在淡水和盐水环境中发现的单细胞绿藻类的顺序,在具有对称结构的长丝状菌落中生长。绿藻主要居住在淡水中,但也可以在海洋中找到。F.E.它们具有由纤维素制成的细胞壁,并含有叶绿体,使它们可以进行光合作用。多细胞种类的绿藻形成菌落,从四个细胞到几千个细胞。用于繁殖,一些物种与一个鞭毛一起游泳的非运动型植物孢子或Zoospores。绿藻类的类型包括海莴苣,马毛藻和死者的手指。红藻通常在热带海洋位置发现,生长在珊瑚礁等实心表面或附着在其他藻类上。它们的细胞壁由纤维素和各种碳水化合物组成。红藻通过产生由水流携带的单孢子直至发芽的单孢子。他们还经历了有性繁殖和几代人的交替。不同种类的红藻形成不同的海藻类型,例如以其优雅的外观而闻名的plumaria elegans。海带是在水下海带森林中发现的一种棕色藻类。棕色藻类是最大的藻类类型之一,由在海洋环境中发现的各种海藻和海带组成。它们具有分化的组织,包括锚固器官,浮力的空气口袋,茎,光合器官以及产生孢子和配子的生殖组织。棕色藻类的生命周期涉及世代的交替。一些棕色藻类的例子包括萨尔加苏姆杂草,岩藻和巨型海带,它们的长度最高可达100米。黄绿色藻类是藻类的最少种类的类型,只有几百种,它们是单细胞生物,具有由纤维素和二氧化硅制成的细胞壁。藻类是具有类似于植物的特征的生物。它们最常见于水生环境中,藻类有七种主要类型,每个藻类具有不同的特征。绿藻通常生活在淡水中,而红绿色藻类则生活在新鲜和盐水环境中。本文解释了藻类的不同类型,包括它们的独特特征和栖息地。它还讨论了藻类作为包含植物样特征并具有光合作用的生物的重要性。藻类的大小差异很大,范围从单细胞到大型多细胞物种,并且可以在不同的水生环境以及潮湿的表面上找到。与较高的植物不同,它们没有根,茎,叶或花朵,并且缺乏血管组织。藻类作为主要生产者在水生生态系统中起着至关重要的作用,它是盐水虾和磷虾等各种海洋生物的食物来源。他们通过性和无性恋方法繁殖,一些物种经历了世代的交替。繁殖方法通常取决于温度,盐度和营养供应性等环境因素。Fritsch分类藻类基于色素沉着,thallus结构,储备食品,鞭毛和繁殖方式。藻类的两种主要类型是叶绿素(绿藻)和Phaeophyceae(棕色藻类)。叶绿素科包括约7,000种,主要在具有海洋形式的淡水环境中发现。他们通过性,无性和营养方法繁殖。它们表现出各种结构,例如单细胞,殖民地,丝状和管状形式。绿藻由于含有不同颜料的叶绿体而能够进行光合作用。它们的颜色范围从黄绿色到深绿色,它们具有线粒体,带有平坦的Cristae,中央液泡和由纤维素和果胶制成的细胞壁。Phaeophyceae由大约2,000种生活在海洋环境中。它们的特征是由于高水平的岩甘氨酸而引起的棕色着色,这是诸如Chl-A,C,Carotenes和Xanthophylls之类的光合色素的另一种存在。他们的植物体被分为固定的锚固,长期存在的stipe,lamina或frond可能是一年。海带或海藻在这一组中是显着的较大形式,其中一些物种达到了相当大的尺寸,例如大环(30-60m),使其成为最大的海洋植物。这些藻类包含由纤维素和藻类等多糖制成的细胞壁,纤维素和藻类酸是一种复杂的多糖,有助于保护它们免受各种环境因素的侵害。棕色藻类包含锚定器官,茎,光合器官以及发展孢子和配子的生殖组织。,他们以拉米那肽和甘露醇的形式保留食物,如在拉米那尼亚,大环,内囊等物种等物种中所见。红色藻类具有植物蛋白酶和植物素色素,使它们的颜色显得红色,尤其是在更深的水域中。这些生物可以由于这些色素而吸收蓝绿色的光谱,从而使它们在更大的深度繁殖。一个例子是液泡。大多数红藻是光自人营养的,但有一些例外,例如Harveyella,它生活在其他红藻类上。它们的细胞壁由纤维素,果胶和硫酸化植物胶体(如琼脂)组成。红藻中的thallus组织可以从单细胞到类似蕾丝的结构不等。这些生物可以保留食物为佛罗里达淀粉,在Gonyostomum和Chattonella等物种中发现。黄绿色藻类是最少的多产量,只有450-650种。它们主要是单细胞的,具有纤维素 - 硅细胞壁,用于运动的鞭毛以及缺乏某些色素的叶绿体。Xanthophyceae通常形成细胞的小菌落,并具有用于运动的鞭毛。他们将食物保留为脂肪,主要是在具有盐水适应的淡水环境中发现的。他们的性繁殖很少见。菊科是单细胞或殖民地鞭毛物,包括各种类型的球形,衣壳,丝状,丝状,变形虫,质子和实质形式。大约12,000种菊科,主要是居住在淡水环境中,其中一些在盐水栖息地中发现。这些微生物的特征在于诸如叶绿素A,P-胡萝卜素和叶黄素等色素。黄金藻类以脂肪的形式存储能量,很少经历有性繁殖,并产生称为囊肿的专门静息细胞。运动形式具有一两个不同类型的鞭毛:金属丝或鞭打。chrysocapsa,lagynion,ochromonas,chrysamoeba是金藻的例子。例子包括气旋,thalassiosira,Navicula和Nitzschia。接下来,芽孢杆菌科(硅藻)由约12,000至15,000种。这些微生物在显微镜下显示为鼓形细胞,并带有一些形成的链。硅藻以脂肪的形式存储能量,并经历广泛的有性繁殖。它们具有由果胶和二氧化硅组成的硅化细胞壁,存在于淡水,海洋和陆地环境中。隐藻科是单细胞鞭毛形式,约有200种。在光学显微镜下,它们以红色或红色颜色的逗号形细胞出现。Cryptophyceae以淀粉的形式存储能量,具有由纤维素组成的细胞壁,并具有两个不等的鞭毛。罕见的异恋性繁殖发生在这些生物体中,居住在淡水和海洋环境中。例子包括plagioselmis,falcomonas,rhinomonas,teleaulax和chilomonas。Dinophyceae是大约200种的运动单细胞生物。他们的主要色素包括叶绿素a和c,β-胡萝卜素和叶丁香。罕见的异恋性繁殖发生在这些生物中,这些生物主要居住在海洋环境中,但有些存在于淡水中。Dinophyceae以淀粉或脂肪的形式存储能量。例子包括Alexandrium,Dinophysis,Gymnodinium,Peridinium,Polykrikos,Noctiluca,Ceratium和Gonyaulax。叶绿素科是具有鲜绿色色谱和过量叶丁香的单细胞生物。他们以脂肪的形式存储能量,并具有双足动动物形式。这些微生物仅居住在淡水环境中。euglenineae是具有光合色素的运动单细胞或殖民地生物,例如叶绿素a和b,β-胡萝卜素和木蛋黄酱。他们以淀粉或脂肪的形式存储能量,并具有类似于微观动物的裸纤毛生殖器官。有性繁殖尚未得到这些生物的明确证明。尤格伦氨酸中不存在细胞壁,其中一种或多种金属丝类型。一个例子是Euglena。最后,蓝藻科或粘菌科(蓝绿色藻类)由单细胞,殖民地或多细胞体组成,具有原核核和双膜性线粒体和叶绿体。这些微生物居住在各种环境中,并具有多种特征。颜料在蓝藻科的独特蓝色中起着至关重要的作用,植物蛋白蛋白是主要的贡献者。这组藻类缺乏运动阶段,而以氰基雄雄或粘菌糖淀粉的形式存储食物。它们的细胞壁由果胶或纤维素组成。在许多蓝绿色藻类物种中常见的独特特征,例如“假”分支和杂环。在蓝菌科中没有有性繁殖,无处不在,到处都可以找到。这些生物的例子包括Nostoc,振荡器,Anabaena,Lyngbya和Plectonema。藻类是主要生产者,利用叶绿素A和B进行光合作用,并且具有确定其颜色的各种色素。藻类通常被错误地考虑到植物或生物。然而,某些物种可以产生有毒的花朵,例如红潮,蓝绿色藻类和蓝细菌,对人类健康,水生生态系统和经济构成重大威胁。藻类有多种类型的藻类,包括绿藻(绿藻),Phaeophyceae(棕色藻类),rohodophyceae(红藻类),Xanthophyceae(黄绿色藻类)和氰基藻科和粘液菌科或粘粒细菌(蓝绿色藻类)。这些生物可以大致分为三个大藻类:棕色藻类,绿藻和红藻。
经济分析A.宏观经济和部门上下文1。基里巴蒂(Kiribati)是世界上最偏远的国家之一,面临重大的经济挑战。在32个环礁和一个珊瑚岛上,超过115,000人的人口分布在350万平方公里的海洋地区。这种地理状况增加了能源和其他服务的成本,从而限制了私营部门发展的机会。气候变化构成了巨大的威胁,包括易受海平面上升,风暴潮,沿海侵蚀和盐水入侵的脆弱性。此外,较高的海洋表面温度可能会破坏金枪鱼迁移和产卵模式。这可能会影响该国的经济增长,这取决于捕鱼许可的收入。2。南塔拉瓦(South Tarawa)获得电网电力的距离超过72%,但发电的成本很高,因为对发电的进口柴油燃料非常依赖。现有的太阳能装置涵盖了当前28吉瓦小时(GWH)的当前年能源需求的9%。在2025年,酒吧预测住宅,工业,商业和政府客户的全国电力需求将为37.5 GWH。1 3。基里巴蒂的能源部门政策和优先事项由基础设施和可持续能源部管理。对该行业的投资受到2016 - 2036年基里巴蒂愿景和基里巴蒂综合能源路线地图(2017- 2025)的指导,该地图将可再生能源产生目标定为2025年在南塔拉瓦州的36%。B.项目输出4。拟议的项目与基里巴蒂的能源路线图和投资计划一致,并且超出了该目标。该项目将有三个输出:(i)安装4兆瓦(5兆瓦 - 峰[MWP])网格连接的太阳能光伏电厂和13兆瓦的电池储能系统,即现场准备,地面设备,地面安装板,变种板,变种板,变种板,变种板,变种板,变种工厂设施,工厂设施和1年的运营和维护(O)和1年的运营和维护(O); (ii)制定一项性别敏感的能源草案,以增加可再生能源和私营部门参与的部署; (iii)项目执行机构,项目实施机构,基里巴蒂公共事业委员会(PUB)和其他利益相关者的能力建设。5。电池储能系统约占光伏系统和电池储能系统工厂成本的60%(占项目总成本的49%),尽管可能被视为没有产生任何电力,但它可以再增加2.5 MWP(未能使用电池的总发电量的35%)。为此,考虑了整个项目的成本和收益。C.假设和参数6。经济分析是根据亚洲发展银行指南进行的,所有成本和收益均以2020年的价格表示。对项目的经济评估是通过使用国内价格数字进行比较而没有项目的情况进行的。这些费用不包括税收和关税,财务费用和价格意外事件,但包括身体意外情况。该项目的经济成本包括(i)资本成本,包括民用工程以及电气和机械工程; (ii)O&M成本,包括更换折旧设备的费用。假定残差值为零。
对流在各种天然和人为的过程中起着至关重要的作用,从而可以通过流体运动有效地传热。本综合指南提供了对流的可访问概述,其中包含实践示例,以说明其原理。,它是寻求阐明这一基本科学概念的教育工作者的宝贵资源。引人入胜且信息丰富,该指南非常适合增强对热动态的理解。对流涉及通过流体(液体或气体)的移动加热的转移,因为加热颗粒会上升,而较冷的颗粒下沉,从而产生圆形流动。这个过程对于理解自然现象和技术应用至关重要,这是物理,气象学和工程学的关键概念。对流的一个经典例子是在炉子上加热水,热水升至表面,冷水沉入底部,形成连续的循环,从而有效地在整个水中转移热量。对流传热的公式可以表示为q = haΔt,强调了诸如传热速率,对流传热系数,表面积和温度差等因素的重要性。这22个对流示例的汇编展示了从日常家庭活动到大规模环境模式的不同环境中的基本过程。冷却和冷凝时,温暖的空气会升起,形成云和降水。同样,随着热量从其表面散发的,一杯咖啡会冷却,而森林通过吸收热量并引起空气运动来调节气候。从沸水到洋流,大气循环,房屋中的散热器,热气球,海风,地球的披风对流,加热汤,熔融冰,熔岩灯,太阳能电池板,冰箱线圈,汽车辐射器和空调,每个例子都在行动中表明了暴力。在烤箱中,热空气循环均匀地煮食物,就像间歇泉爆发地下水被地热能加热一样。板块构造是由于地球核心的热量引起的,导致构造板的运动。房间风扇循环空气以调节室温,人体血液循环通过对流调节体温。对流不仅限于科学概念;它在我们的日常经历中起着作用。示例包括在炉灶上烹饪,洗热水淋浴,使用烤面包机,地板加热系统以及在生产线上晾干衣服。在现实情况下,对流冷却笔记本电脑,铁衣,在建筑物中提供自然通风,加热茶水和使用壁炉。对流还塑造大气现象,例如陆地和海风,云层,季风风,飓风地层以及山和山谷的微风。通过外部手段(例如风扇或泵)运动在工程,气象学和环境研究等各个领域都起着至关重要的作用。了解这些类型对于设计过程和系统至关重要。例子包括在沸水中的自然对流,供暖,海洋电流,冰箱中的空气循环以及风形成。在极端情况下,这些事件可能导致严重的雷暴,甚至龙卷风。对流还可以通过流体中分子的质量运动有效地传输热量,这使得在许多应用中至关重要。对流在塑造天气模式和影响日常生活中起着关键作用,从汽车冷却系统到工业冷却塔,太阳能热水板,地热加热系统,散热器加热器和冷凝器盘绕冰箱的冰箱。认识到对流的机制和示例强调了其在教育和实际情况下的重要性。当热量通过较热的材料与较冷的材料配对的较热材料的上升,因此会发生对流。这种现象涉及质量在流体中的运动,通常导致气象学的向上方向和地质地壳下地壳下方的慢速物质运动。对流在各种日常生活中起着至关重要的作用,包括开水,散热器操作,蒸杯热茶,冰融化,冷冻食物解冻,强迫对流等等。在气象学中,对流与天气条件(例如对流云和斜纹线条)紧密相关。此外,热空气气球依靠加热的空气升起来航行天空。理解对流的定义为探索其在不同研究领域的各种应用和发生的情况提供了坚实的基础。对流在各种自然和人为的过程中起着至关重要的作用。在热气球中,温度差异引起的浮力会随着热空气被困在里面而提升气球。要下降,其中一些热空气被释放,使较冷的空气进入并减少浮力。该原理也称为堆栈效应或烟囱效应,由于室内和室外空气之间的密度差异,空气进出建筑物。在地质学中,对流电流是地球地幔缓慢运动的原因。 内部的热量通过地幔升起,使其在表面冷却。 此过程驱动板块构造,导致火山形成。 重力对流发生时,淡水比盐水浓密,从而使干盐向下扩散到潮湿的土壤中。 海洋循环是对流的另一个例子,在赤道附近的温水向杆子循环,杆子处的冷水向赤道移动。 在恒星中,对流区域在转移能量中起着至关重要的作用。 等离子体加热时,冷却的血浆下降时会产生循环模式。 对流不限于这些例子;可以在各种人类和自然现象中观察到。 既然您对对流有了基本的了解,请考虑通过探索十个现实生活中常见的凝结示例来扩大知识。在地质学中,对流电流是地球地幔缓慢运动的原因。内部的热量通过地幔升起,使其在表面冷却。此过程驱动板块构造,导致火山形成。重力对流发生时,淡水比盐水浓密,从而使干盐向下扩散到潮湿的土壤中。海洋循环是对流的另一个例子,在赤道附近的温水向杆子循环,杆子处的冷水向赤道移动。在恒星中,对流区域在转移能量中起着至关重要的作用。等离子体加热时,冷却的血浆下降时会产生循环模式。对流不限于这些例子;可以在各种人类和自然现象中观察到。既然您对对流有了基本的了解,请考虑通过探索十个现实生活中常见的凝结示例来扩大知识。
Adamson, PT、Rutherfurd, ID、Peel, MC、Conlan, IA,2009 年。湄公河的水文学。引自:Cambell, I.(编辑),湄公河:国际河流流域的生物物理环境,第一版。Elsevier,第 53 – 76 页。Alcayaga, H.、Belleudy, P.、Jourdain, C.,2012 年。流域尺度上水电结构对河流扰动的形态学建模。引自:Mu ˜ noz, RM(编辑),河流流量 2012。河流水力学国际会议,第 537 – 544 页。 Arias, ME、Cochrane, TA、Kummu, M.、Lauri, H.、Holtgrieve, GW、Koponen, J.、Piman, T.,2014。水电和气候变化对东南亚最重要湿地生态生产力驱动因素的影响。生态模型 272,252 – 263。Ashouri, H.、Hsu, K.、Sorooshian, S.、Braithwaite, DK、Knapp, KR、Cecil, LD、Nelson, BR、Prat, OP,2015。PERSIANN-CDR:来自多卫星观测的每日降水气候数据记录,用于水文和气候研究。美国流星学会通报 96(1),69 – 83。 Ayugi, B., Tan, G., Gnitou, GT, Ojara, M., Ongoma, V., 2020. 罗斯贝中心区域气候模型对东非降水的历史评估和模拟。大气研究 232, 104705 。Bao, Z., Zhang, J., Wang, G., Fu, G., He, R., Yan, X., Jin, J., Liu, Y., Zhang, A., 2012. 中国北方海河流域径流量减少的归因:气候变化还是人类活动?水文地质学杂志 460 – 461, 117 – 129 。Bartkes, M., Brunner, G., Fleming, M., Faber, B., Slaughter, J., 2016. HEC-SSP 统计软件包用户手册 2.1 版。美国陆军工程兵团。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2018a。澜沧江梯级大坝对越南湄公河三角洲流态的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (4), 487 – 492。Binh, DV、Kantoush, S.、Mai, NP、Sumi, T.,2018b。越南湄公河三角洲在增加管制流量和河流退化的情况下的水位变化。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 871 – 876。Binh, DV、Kantoush, S.、Sumi, T.、Mai, NP,2019。湄公河流域的长期排放、水位、盐度浓度和降水。 Mendeley Data V3 。Binh, DV、Kantoush, S.、Sumi, T.,2020. 上游水坝导致越南湄公河三角洲长期排放和沉积物负荷的变化。地貌学 353,107011。Cook, BI、Bell, AR、Anchukaitis, KJ、Buckley, BM,2012。积雪和降水对湄公河下游流域旱季径流的影响。地球物理研究杂志 117,D16116。Dang, TD、Cochrane, TA、Arias, ME、Van, PDT、Vries, TTD,2016。湄公河洪泛区水利基础设施建设带来的水文变化。水文过程 30,3824 – 3838。 Darby, SE、Hackney, CR、Leyland, J.、Kummu, M.、Lauri, H.、Parsons, DR、Best, JL、Nicholas, AP、Aalto, R.,2016 年。热带气旋活动变化导致巨型三角洲河流沉积物供应减少。《自然》276 – 279。Eslami, S.,Hoekstra, P., Trung, NN, Kantoush, SA, Binh, DV, Dung, DD, Quang, TT, Vegt, MVD,2019。人为沉积物匮乏导致湄公河三角洲的潮汐放大和盐入侵。Sci. Rep. 9,18746。Fan, H., He, D., Wang, H.,2015。筑坝澜沧江-湄公河主流的环境后果:综述。Earth-Sci. Rev. 146,77 – 91。Ha, TP, Dieperink, C., Tri, VPD, Otter, HS, Hoekstra, P.,2018a。越南湄公河三角洲适应性淡水管理的治理条件。J. Hydrol. 557,116 – 127。 Ha, DT、Ouillon, S.、Vinh, GV,2018b。根据高频测量(2009 – 2016 年)得出的湄公河下游水和悬浮沉积物预算。水 10, 846 。Harris, I.、Osborn, TJ、Jones, P.、Lister, D.,2020。CRU TS 月度高分辨率网格化多元气候数据集第 4 版。科学数据。https://doi.org/10.1038/s41597-020-0453-3)。Hecht, JS、Lacombe, G.、Arias, ME、Dang, TD,2019。湄公河流域的水电大坝:其水文影响回顾。水文杂志 568, 285 – 300 。 Hoang, L.、Ngoc, TA、Maskey, S.,2016。一种用于估算越南湄公河三角洲 CERES-rice 模型参数的稳健参数方法。大田作物研究。196,98 – 111。Hoanh, CT、Jirayoot, K.、Lacomne, G.、Srunetr, V.,2010。气候变化和发展对湄公河流量制度的影响:首次评估 – 2009 年。MRC 技术论文第 29 号。湄公河委员会,老挝万象。Jordan, C.、Tiede, J.、Lojek, O.、Visscher, J.、Apel, H.、Nguyen, HQ、Quang, CNX、Schlurmann, T.,2019。重新审视湄公河三角洲的采砂 – 目前当地沉积物短缺的规模。 Rep. 9,17823 。 Kantoush, S.、Binh, DV、Sumi, T.、Trung, LV,2017。上游水电站大坝和气候变化对越南湄公河三角洲水动力学的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 73 (4),109 – 114 。Kendall, AMG,1938。一种新的秩相关性测量方法。Oxford J. 30,81 – 93 。Kiem, AS、Ishidaira, H.、Hapuarachchi, DP、Zhou, MC、Hirabayahi, Y.、Takeuchi, K.,2008。使用高分辨率日本气象局 (JMA) AGCM 模拟湄公河流域未来水文气候学。水文过程。22,1382 – 1394 。 Kingston, DG、Thompson, JR、Kite, G.,2010。湄公河流域气候变化预测排放量的不确定性。水文地球系统科学讨论。7,5991 – 6024。Kondolf, GM、Rubin, ZK、Minear, JT,2014。湄公河上的水坝:累积沉积物匮乏。水资源研究。50,5158 – 5169。 Kondolf, GM, Schmitt, RJP, Carling, P., Darby, S., Arias, M., Bizzi, S., Castelletti, A., Cochrane, TA, Gibson, S., Kummu, M., Oeurng, C., Rubin, Z., Wild, T., 2018. 湄公河沉积物预算的变化:大型河流流域的累积威胁和管理策略。环境科学总论 625, 114 – 134 。Kummu, M., Lu, XX, Wang, JJ, Varis, O., 2010.湄公河沿岸新兴水库的全流域泥沙截留效率。地貌学 119,181 – 197 。 Lauri, H.,De Moel, H.,Ward, PJ,R ¨ as ¨ anen, TA,Keskinen, M.,Kummu, M.,2012。湄公河水文未来变化:气候变化和水库运行对流量的影响。水文地球系统科学 16,4603 – 4619 。 Li, D.,Long, D.,Zhao, J.,Lu, H.,Hong, Y.,2017。湄公河流域观测到的流动状态变化。水文杂志 551,217 – 232 。 Lu, XX,Siew, RY,2006。过去几十年来湄公河下游的水流量和泥沙通量变化:中国大坝的可能影响。 Hydrol. Earth Syst. Sci. 10, 181 – 195 。 Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流变化观测结果:中国水坝的影响? Quat. Int. 336, 145 – 157 。 Mai, NP, Kantoush, S., Sumi, T., Thang, TD, Trung, LV, Binh, DV, 2018. 评估和适应水坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378 。 Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河流域流动状态的观测变化。J. Hydrol. 551, 217 – 232 。Lu, XX, Siew, RY, 2006. 过去几十年来湄公河下游水流量和泥沙通量的变化:中国大坝的可能影响。水文地球系统科学 10, 181 – 195 。Lu, XX, Li, S., Kummu, M., Padawangi, R., Wang, JJ, 2014. 湄公河下游清盛水流的观测变化:中国大坝的影响?Quat. Int. 336, 145 – 157 。 Mai, NP、Kantoush, S.、Sumi, T.、Thang, TD、Trung, LV、Binh, DV,2018。评估并适应大坝运行和海平面上升对越南湄公河三角洲海水入侵的影响。J. Jpn. Soc. Civ. Eng. Ser. B1 74 (5), 373 – 378。Manh, NV、Dung, NV、Hung, NN、Kummu, M.、Merz, B.、Apel, H.,2015。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。Glob. Planet. Change 127,22 – 33。Mann, HB,1945。非参数趋势检验。计量经济学 13,245 – 259。 McCuen, RH、Knight, Z.、Cutter, G.,2006。Nash-Sutcliffe 效率指数评估。J. Hydrol. Eng. 11 (6),597 – 602。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年影响全球河流排入海洋的气候和人为因素。全球星球变化 62,187 – 194。Pettitt, AN,1979。变点问题的非参数方法。Appl. Stat. 28 (2),126 – 135。 Poff, NL, Ward, JV, 1989. 径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805 – 1818 。Pokhrel, Y., Burbano, M., Roush, J., Kang, H., Sridhar, V., Hyndman, DW, 2018. 气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25 。R ¨ as ¨ anen, TA, Koponen, J., Lauri, H., Kummu, M.,2012. 湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513 。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。湄公河三角洲洪泛区未来沉积物动态:水电开发、气候变化和海平面上升的影响。全球地球变化 127,22 – 33 。Mann,HB,1945。非参数趋势检验。计量经济学 13,245 – 259 。McCuen,RH、Knight,Z.、Cutter,G.,2006。Nash-Sutcliffe 效率指数评估。水文工程杂志 11(6),597 – 602 。湄公河委员会 (MRC),2005。湄公河流域水文概况,万象,82。湄公河委员会。 Milliman, JD、Farnsworth, KL、Jones, PD、Xu, KH、Smith, LC,2008。1951-2000 年气候和人为因素对全球河流排入海洋的影响。全球地球变化 62,187-194。Pettitt, AN,1979。变点问题的非参数方法。应用统计 28(2),126-135。Poff, NL、Ward, JV,1989。径流变异性和可预测性对流水群落结构的影响:径流模式的区域分析。加拿大鱼类水产科学杂志 46,1805-1818。 Pokhrel, Y.、Burbano, M.、Roush, J.、Kang, H.、Sridhar, V.、Hyndman, DW,2018。气候变化、土地利用和水坝对湄公河水文的综合影响综述。水 10 (3),1 – 25。R ¨ as ¨ anen, TA、Koponen, J.、Lauri, H.、Kummu, M.,2012。湄公河上游流域水电开发对下游水文的影响。水资源管理 26,3495 – 3513。
分类为电导体的材料具有有效携带或运输电流的能力,而由于内部电子的移动有限,绝缘子无法这样做。电子流经物质的易于性主要取决于它们可以轻易地经过其原子和原子核的方式。铁和钢等材料是示例性的导体,而玻璃和塑料等物质的电导率较差。价电子在电导传导中的作用不能夸大;这些最外面的电子与他们的父原子松散结合,并且可以相对容易从其位置移开。易于获得或损失电子的无机材料通常显示高电导率,而有机分子由于将它们固定在一起的强共价键而倾向于绝缘。有趣的是,某些材料可能会根据其组成而表现出不同水平的电导率;例如,纯净水是一种绝缘子,但脏水在某种程度上导致电力。添加杂质或与其他元素掺杂可以显着改变材料的电导率。在电导体中,由于普通条件下的高电导率,银是最好的。然而,它对破坏的敏感性和随后降低电导率的氧化物层的形成不可忽视。相反,经常在需要电流控制的应用中使用强大的绝缘子,例如橡胶,玻璃和钻石。某些材料在极低的温度下成为超导体。材料的形状和大小在确定其电导率水平方面也起着至关重要的作用;较厚的碎片通常表现出比较薄的电导性能更好。此外,温度波动会影响电导率水平,而温度通常会导致材料内的电子迁移率提高。大多数材料根据温度和其他因素表现出不同水平的电导率。凉爽的金属通常是好的导体,而热金属的效率往往降低。传导本身有时会改变材料的温度。在导体中,电子自由流动而不会损害原子或引起磨损。但是,移动电子确实会遇到阻力。因此,流经导电材料的电流会加热它们。金属和等离子体通常是好的导体,这是由于其价电子的移动性。绝缘子通常由有机分子组成,主要由牢固的共价键组合在一起,使电子很难流动。掺杂或杂质等因素也会影响电导率,如纯净水是绝缘体,但由于自由浮动离子而导致的盐水。所有材料都可以根据表1。表1:导体,绝缘体和半导体特性铜是一个众所周知的导体,以最小的对立传递电流。橡胶是一种绝缘子,通常用于涂上用于电动工作的工具手柄。van de Graaff在1930年代。需要极高的电压才能迫使橡胶进入传导。石墨,一种碳的形式,用作半导体,限制了给定电压产生的电流量。在本文中,我们探讨了导体,绝缘体和半导体的一些特征。导体导体是一种对电子流(电流)几乎没有反对的材料。由于其电阻较低,因此通过它产生电流所需的能量很少。最好的导体具有最低的电阻,使其非常适合传输电流。一个原子的价壳决定其电气特性,其价值壳电子和单位体积原子的数量影响电导率。绝缘子绝缘子是具有极高电阻的材料,可防止电流流动。例如,电源线上的绝缘材料可防止电流在接触时到达您。一些元素,例如霓虹灯,是天然绝缘体。用于保护技术人员的常见绝缘子包括橡胶,特氟龙和云母等化合物。正如预期的那样,导体和绝缘子具有相反的特性,绝缘子具有完整的价壳,单位体积的原子很少。半导体的任何表现出导体和绝缘子之间中间电导率的元素都可以视为半导体。半导体:当面对明显的电阻时,导体和绝缘子铜之间具有耐药性的材料最小的对立变得显而易见。当原子紧密相互作用时,它们的能级堆在一起。等式1实现了两个主要目的:它使我们能够计算利息并揭示利息价值及其变量之间的关系。例如,等式1说明$ r = \ rho \ frac {l} {a} $,证明电阻与电阻率,长度和与横截面面积成反比成正比。此外,温度由于温度系数而影响导体的电阻率,导体随着温度的升高而升高。回顾问题概述了导体,绝缘体,半导体的定义,并解释了电导率如何由价电子和原子密度确定。电阻率定义为特定材料体积的电阻,通常以CMIL-ω/FT或ω-CM单位测量。导体表现出正温度系数,表明随着温度升高的耐药性增加。这种基本的理解将材料根据电导率的电导率分类为导体,绝缘体和半导体。例如,如果两个原子连接,则与单个原子相比,相邻能级的数量将是两倍。随着越来越多的原子融合在一起,这种模式继续存在,形成了多个层次的集群。在固体中,许多原子会产生大量的水平,但是大多数高能级均融合到连续范围内,除了根本不存在的特定差距。这些没有级别的区域称为带隙。电子占据的最高能量簇被称为价带。这种现象用于保护与保险丝的电路。导体具有部分填充的价带,具有足够的空位,使电子可以在电场下自由移动。相比之下,绝缘子完全填充了其价带,并在其之间留下了很大的差距。这个较大的间隙可防止电子移动,除非有足够的能量越过。半导体在价和传导带之间的差距较小。在室温下,由于热能,价带几乎已经满,导致某些电子转移到传导带中,它们可以在外部电场下自由移动。Valence带中留下的“孔”表现就像正电荷载体。温度较高的材料倾向于增加对电流的抵抗力。例如,5°C的温度升高可提高铜的电阻率2%。相反,由于电子在传导带中的填充水平升高,绝缘体和半导体的电阻率降低,它们可以在外部电场下移动。价和导带之间的能量差会显着影响电导率,较小的间隙导致温度较低的电导率较高。分子由于放射性元件和宇宙射线的辐射而分离为离子,使大气导电中的某些气体产生。电泳根据颗粒在电解溶液中的迁移率分离。欧姆加热会在电流流过电线时,如电线或灯泡所示。电阻器中消散的功率由p = i^2r给出。但是,在某些材料中,由于碰撞而导致的能量损失在低温下消失,表现出超导性。发生这种情况是因为电子会失去对声子的能量,但是在超导体中,通过电子和材料之间的复杂量子机械相互作用来阻止这种能量损失。常用的超导体是一种niobium and Titanium合金,它需要冷却至极低的温度才能表现出其性质。在较高温度下发现超导性能彻底改变了各个领域,从而实现了液氮而不是昂贵的液态氦气。这一突破为电力传输,高速计算等中的应用铺平了道路。12伏汽车电池展示了如何通过化学反应或机械手段来利用电动力。Van de Graaff Generator是Robert J.由于其概念上的简单性,这种类型的粒子加速器已被广泛用于研究亚原子颗粒。该设备通过将正电荷运送到绝缘输送带上的正电荷从基部到导电圆顶的内部,在那里将其移除并迅速移动到外面。带正电荷的圆顶会产生一个电场,该电场排斥额外的正电荷,需要工作以保持传送带的转动。在平衡中,圆顶的电势保持在正值下,电流从圆顶流向地面,并通过在绝缘带上的电荷运输均衡。这个概念是所有电动力来源的基础,在该源中,在单独的位置释放了能量以产生伏特细胞。一个简单的示例涉及将铜和锌线插入柠檬中,从而在它们之间产生1.1伏的电势差。“柠檬电池”本质上是一个令人印象深刻的伏特电池,能够仅产生最小的电力。相比之下,由类似材料制成的铜锌电池可以提供更多的功率。此替代电池具有两种溶液:一种含有硫酸铜,另一种含硫酸锌。氯化钾盐桥通过电气连接两种溶液。两种类型的电池都从铜和锌之间电子结合的差异中得出了能量。能量,从电线中取出游离电子。同时,来自电线的锌原子溶解为带正电荷的锌离子,使电线具有多余的自由电子。这会导致带正电荷的铜线和负电荷的锌线,该锌线被盐桥隔开,该盐桥完成了内部电路。一个12伏铅酸电池由六个伏特电池组成,每个电池串联连接时大约产生大约两个伏特。每个细胞都具有并行连接的正极和负电极,为化学反应提供了较大的表面积。由于材料经历化学转换的速度,电池会递送更大的电流。电池电位为1.68 + 0.36 = 2.04伏。在铅酸电池中,每个伏电池都包含纯海绵状铅和氧化铅的正电极的负电极。将铅和氧化铅溶解在硫酸和水中。在正电极下,反应为PBO2 + SO -4- + 4H + + 2e-→PBSO4 + 2H2O +(1.68 V),而在负末端,它是Pb + SO -4-→PBSO4-→PBSO4 + 2e- +(0.36 V)。通过汽车发生器或外部电源为电池充电时,化学反应会反转。60Ω电阻连接到电动力。字母A,B,C和D是参考点。源将点A保持在电势12伏高于点D,从而导致VA和VD之间的12伏的电势差。由于点A和B通过具有可忽略的电阻的导体连接,因此它们具有相同的电势,并且点C和D具有相同的潜力。因此,整个电阻的电势差也为12伏。可以使用欧姆定律计算流过电阻的电流:i = va -vd / rb。代替给定值,我们得到i = 0.2安培。可以使用等式(22):p = i^2 * R计算热量中消散的功率。插入值,我们得到p = 0.04瓦。当热量来自电动力源时消散的能量。该源在将电荷DQ从点d到点A移动的工作中所做的工作由dw = dq *(va -vd)给出。电池传递的功率是通过将DW除以DT获得的,导致P = 2.4瓦。如果两个电阻串联连接,则等效电阻是个体电阻的总和:rab = r1 + r2。使用R1和R2的给定值,我们获得RAB =7Ω。并行连接两个电阻时,电荷具有从C到D流动的其他路径,从而降低了整体电阻。可以使用等式(20):1/rcd = 1/r1 + 1/r2计算等效电阻的值。代替给定值,我们获得RCD = 1/0.7 =1.43Ω。在阻抗为2欧姆或5欧姆的情况下,值得注意的是,这些方程式可以相对轻松地适应多种电阻。