新技术不可避免地越来越多地融入到机构和人们的活动中,这一事实对可持续性提出了挑战,因为充分利用进步将使发展更加尊重环境。考虑到上述情况,这项工作的目的是调查与人工智能、清洁生产和可持续绩效相对应的研究趋势。为此,在科学数据库 Scopus 和 Web of science 中对 110 篇论文进行了文献计量分析。为了进行统一、清理和图形可视化过程,使用了技术工具 Vantage Point、R 中的 Biblioshiny 和 VoSviewer。结果展示了近年来该主题在科学领域的当前趋势。对各国的分析表明,亚洲大陆处于世界领先地位。另一方面,关键词的研究强调了研究的三大基本支柱的重要性,可能存在非实证关系。结果表明,人工智能、清洁生产和可持续性之间的接近性。
Hexpol是一个世界领先的聚合物组,在高级聚合物化合物(复合)中具有强大的全球位置,用于板热交换器(垫圈和密封件)的垫圈(垫圈和密封件)以及由卡车和脚轮施用的聚合物材料制成的车轮(车轮)。客户主要是全球汽车和工程行业,建筑和建筑行业以及在运输,能源,消费者和有线行业以及医疗设备,板块热交换器和叉车的制造商中的系统供应商。该小组在两个业务领域组织,即己托复合和己托工程产品。Hexpol Group在2024年的销售额为20,437 MSEK,该集团在14个国家 /地区拥有约5,000名员工。此信息使得Hexpol AB(Publ)有义务按照欧盟市场滥用法规发布。通过上述联系人的代理,下午01:00提交了信息出版。 CET于2025年2月18日。这是瑞典原始措辞的非官方翻译。如果英语翻译与瑞典原件之间存在差异,则瑞典文字应占上风。
orcid ID:0000-0002-7490-1077 doi:10.56201/ijaes.v10.no10.2024.pg9.13摘要该项目是为了研究Jega Gocal Inducal村的Jega Gocal Indurophia village jega kebbi State,Kebbi State,Nigeria,Nigeria,Nigeria的Sanagi村庄的人类居住区中的游戏鸟类物种的分布和丰富性。评估不同的游戏鸟类,并确定研究区域(人类居民区)中的主要和稀有物种。早上观察是在06:00 AM至10:00 AM之间进行的,而晚上的访问是从04:30 pm到06:30 PM,当时温度相对凉爽,鸟类活动很高。一本野外指南被用来识别野外看到的鸟类,即双筒望远镜,用来从远处看鸟,一本录音书,以记录被视为的鸟类的特征。使用了所收集的数据,例如使用社会科学(SPSS)的频率,表格,表格和统计包。从结果中,在研究区域中确定了五(5)种游戏鸟类的数量,还可以观察到,早晨的鸽子具有主要数量的游戏鸟种(29.46%)),而最少的(13.95)是牛Egret,是较少的游戏鸟类的牛。应该进行更多的研究,以评论这项工作,并更清楚地了解研究区域中的野鸟的组成。关键字:物种;游戏鸟;主导者;稀有物种和鸟类
简介:来自加州贻贝的贻贝足蛋白 (MFP) 的粘附特性因其在生物医学工程和材料科学等领域的潜在应用而备受关注[1][2]。然而,温度、压力和 pH 等太空环境对这些蛋白质的影响尚未得到充分探索。本研究提出了一种计算机模拟方法来研究 MFP 在太空相关条件下的结构动力学。通过序列分析和分子动力学模拟的结构分析,我们模拟了关键粘附蛋白的行为,重点关注它们的构象变化和相互作用能。[4] 我们的研究结果表明,虽然一些 MFP 在不同条件下表现出稳定性模式的变化。这些结果为 MFP 在太空应用中的潜在应用提供了宝贵的见解,例如用于修复航天器的生物粘合剂和适用于陆地环境的其他材料。此外,MFP 可用于太空医学中的伤口愈合,其独特的涂层可用于潮湿和太空环境[4][5]。需要进一步研究来验证这些计算预测并探索在空间技术中利用 MFP 的可行性。
高市部长在第六届太空可持续性峰会上的致辞 开幕词 高市早苗 日本政府太空政策国务大臣 2024 年 7 月 11 日 大家好,欢迎各位尊敬的主旨发言人、小组成员和与会者。首先,我要衷心感谢您参加由日本内阁府和世界安全基金会共同主办的第六届太空可持续性峰会。本次峰会的目的是促进和分享参与外层空间使用的安全、工业和学术界的全球专家和利益相关者之间的国际共识。通过从政府、工业和学术等广泛角度进行的全球讨论,我们可以解决确保可持续利用外层空间的挑战以及应对这些挑战应采取的措施。日本积极参与联合国外层空间和平利用委员会等国际讨论,致力于实现基于外层空间法治的自由开放的国际秩序。去年5月,我作为G7峰会主席,主持召开了G7仙台科技部长会议,讨论了落实联合国外层空间委员会通过的太空垃圾国际准则以及减少和治理垃圾的必要性。G7科技部长公报中,除了联合声明外,大力鼓励技术开发,承诺不进行破坏性的直接上升式反卫星导弹试验,并鼓励其他国家效仿。类似内容也出现在G7广岛领导人公报中。今年3月,日本政府更新了“地球轨道利用规则制定中长期政策”。这是一项行动计划,旨在推动日本加强防撞、太空态势感知、碎片减缓和修复、在轨服务等努力。我相信我们的专家将详细阐述行动计划中涉及的问题,例如日本在可持续利用外层空间规则制定方面的努力、碎片修复技术的开发以及建立实施SSA的组织体系。我期待一场热烈的讨论。
1,2 学生,NHVPS,班加罗尔 3 讲师,NHVPS,班加罗尔 摘要:自 20 世纪 30 年代以来,宇航服一直是太空探索不可分割的一部分。在 21 世纪,太空探索面临着比以往更多的挑战,为了满足日益增长的需求,一些公司开始考虑宇航服设计。宇航服存在许多问题,包括笨重、水循环问题、过时等 [13]。这些问题都有不同的解决方案,但这些公司的任务是将所有这些问题解决后整合到一件宇航服中。这些问题通过采用混合机械压力和聚乙烯宇航服得到了解决。与麻省理工学院的 BioSuit 类似,我们的宇航服使用机械压力来提供必要的压力,但通过使用相变材料 Rubitherm RT82,BioSuit 不再需要使用电源持续供热。聚乙烯纳米颗粒层可提供必要的辐射防护。关键词:机械压力、聚乙烯、石墨烯、碳纳米管、相变材料、凯夫拉简介:宇航服是在超地球条件下保护人体的服装。它们主要为宇航员提供压力、氧气、水、冷却、防电离辐射和微陨石的保护。现有的宇航服被称为舱外机动装置 (EMU)。SpaceX 等私人组织已于 2026-2027 年启动火星登陆计划 [4]。随着这一目标的临近,SpaceX、NASA、JPL 和其他公司一直在寻找适合这项任务的宇航服。由于太空技术的高速发展,当今世界对更好的宇航服的需求比以往任何时候都更为迫切。目前的宇航服存在许多问题,如漏水 [8]、音频/无线电通信问题、行动障碍等。解决这些问题对于宇航员的安全是必要的,尤其是考虑到未来的火星任务即将到来,而这类任务需要稍微多功能的设计。就火星而言,开发宇航服需要我们考虑到其恶劣的气候,那里辐射高,大气压只有 600-700 Pa。 [1] 我们也知道太空中的压力为零,所以深空和火星宇航服的开发有很大不同。因此,我们的目标是打造一套适用于这两种任务的多功能宇航服。文献综述:NASA xEMU https://oig.nasa.gov/docs/IG-21-025.pdf
1) 艾哈迈德·A·卡卡什 (Karkash)A .(2024) 金属块体、表面和纳米结构的分子动力学研究 2) Diaz, Leopoldo III (2022) 过渡金属表面的第一性原理研究 3) Alsalmi, Omar (2019) 高温二元 Ti-Al 相图的第一性原理研究 硕士委员会主席 1) Aslan, Ali N. (2023) 氧-碳表面污染下 Ag 和 Au 的计算二次电子发射分析 2) Alsharari, Sami (2023) 具有不同碳覆盖率的 Cu (110) 表面的理论研究 3) Vincent III, Timothy Mark (2021) Si 中的 Cu 和 Ag:难以捉摸的 Cu0 和 *Cu0 缺陷 4) Brown, Madeline (2021) 清洁和氢层镍表面的二次电子发射5)Mulherin,Olivia(2017)AuCd形状记忆合金的弹性和热性能的理论研究
Somitra Sanadhya HasservedAsareViewerForsbisiberssStotheseJournals教授:杂志(JOC)(JOC);设计,codeSandCryptography(dcc); cryptography and Communications(ccds); ieeeTrans.oncomm.oncomm。; ietinfo.sec。; ietnetworks; Integration-thevlsijournal; ieice trans。;医疗系统的日记;计算机数学的int。Jour。;离散的数学,算法和应用程序; computerstandardSandInterfaces; chinacommunications; Arabian Jour.ofsci.andengg。; iranianjour.ofcompandelec.engg;jour.ofinfo.sciandengg.prof。somitrasanadhya'sresearchinterearchTrestestsprimicallimilalyVolvolvolvoloveCryptology andSecurity andSecurity和Security,特别关注量子计算和区块链,包括密码。
摘要。本研究正在研究人工智能 (AI) 对哥伦比亚教育的影响。人工智能彻底改变了教育的教学和学习方式,使其适应每个学生的独特需求,并在技术变得越来越重要的世界中缩小教育机会差距。为了更好地理解该主题的发展科学趋势,本研究采用了基于文献计量工具和 Scopus 数据的描述性和定量方法。共有 2,686 位作者和 887 个来源参与,数据显示最近的科学产出增长了 5.31%。2022 年、2021 年和 2023 年,出版物数量急剧上升,占所有科学产出的 34.95%。美国在科学生产力方面领先世界,其次是中国、西班牙和其他国家。被引用最多的论文讨论了医学教育中的电子学习和高等教育中的数字化转型。中国矿业大学、浙江大学和格拉纳达大学是该学科最著名的几所大学。此外,最相关的作者是王 Y 和杨 Y。最后,CHEN CC,1998,J BUS VENTURING 是被引用次数最多的论文,总引用次数为 1806 次。文献计量分析表明,人工智能在哥伦比亚教育中变得越来越重要,表明教学方式正在向更具包容性和效率的方向转变。
简介 在数据呈指数级增长的推动下,人工智能 (AI) 在建筑和施工领域的不断融合正在重塑传统实践。对大量数据集的手动分析和对基于规则的计算方法的依赖带来了挑战,促使人们通过预测模型采用人工智能进行系统数据分析。这种转变影响了该行业的各个方面,包括建筑和结构设计、施工安全、可持续性、可负担性、速度、投资回报率和运营绩效。生成式设计不同于传统方法,它使计算机能够半自主地探索设计空间,为设计师提供多种分析和考虑选项(Baduge 等人,2022 年;Junk 和 Burkart,2021 年;Krish,2011 年)。虽然人工智能在建筑领域的应用越来越受到认可,但在理解和解释人工智能模型输出(通常被认为是“黑匣子”)方面也出现了挑战。值得关注的是,人们对偏见、公平性、信任和可靠性的担忧,特别是在招聘、实时进度监控、网络安全、风险管理和安全等关键领域。人类在这些领域的决策也容易受到偏见的影响,而不愿接受人工智能往往源于缺乏理解。建立对人工智能模型的信任对于获得广泛接受至关重要,这是通过可解释的人工智能 (XAI) 来探索的。这涉及方法和流程,以增强对人工智能算法结果和输出的理解和信心,满足行业对透明度和可靠性的需求 (Matthews 等人,2022 年;Gunning 等人,2019 年;Sokol 等人,2022 年;Love 等人,2023 年)。虽然 XAI 在法律和医学等领域获得了关注,但尽管生成式人工智能兴起,其在建筑领域的探索仍然有限。