– 由英特尔设计和制造的桥接芯片嵌入层压基板中 – 构建基板为 9/12µm L/S,每侧最多 11 个构建层 • 英特尔的 Sapphire Rapids 将成为英特尔首款使用小芯片的数据中心 CPU 服务器
据称,金属 AM 系统专为大批量生产而设计。它包括一个直径 315 毫米、高 400 毫米的构建包络,配备双 1 千瓦激光器操作。为了实现卓越的部件间一致性,Velo3D 报告称,Sapphire 的集成原位工艺计量技术可实现闭环熔池控制,据称这是同类产品中的首创。据称,该系统能够构建复杂的几何形状,并允许设计悬垂度低至五度而无需支撑,以及高达 40 毫米的大型无支撑内径。据报道,最小特征尺寸和壁厚低于 250 微米。为了最大限度地提高生产率,Sapphire 系统包含一个模块,可实现自动切换,无需操作员参与,15 分钟内即可开始新的打印。
VDW砧座由两个单一晶体MOS 2单层在蓝宝石上生长。砧座对于生产2D金属至关重要,原因有两个。首先,单层MOS 2 /SAPPHIRE的原子平坦,无骨的表面确保大规模均匀的2D金属厚度。第二,蓝宝石和单层MOS 2(> 300 GPA)的高年轻人的模量使它们能够承受极端的压力,从而使两个砧之间形成2D金属到
对宽带材料(例如眼镜和晶体)的精确和高质量加工的需求在科学和工业中具有相当大的意义。在这些材料中,蓝宝石由于其出色的机械和光学特性,高导热率和稳定性,低电导率以及针对苛刻的化学物质的弹性而脱颖而出。尽管蓝宝石的硬度很硬,但蓝宝石还是脆弱的,使其容易在传统的加工尝试中进行破解。最近,诸如激光消融之类的替代非接触方法已成为提高加工质量的潜在解决方案。然而,对宽带材料的激光处理的研究,尤其是利用飞秒固态激光系统的高谐波,仍然是不完整的。我们的研究重点是研究使用飞秒(300 fs)深紫外线(206 nm)激光脉冲的C-CUT蓝宝石晶体的非热激光消融,并将结果与传统的IR IR femtsosecond消融进行了比较。出版物涵盖了对消融过程的全面描述,以及与随附的扫描电子显微镜图像一起对各种已达到的形态进行了回顾。我们的发现表明,可以通过特定激光处理参数范围内的单步过程来实现表面粗糙度低于100 nm的有效消融。蓝宝石的消融过程涵盖了强烈的孵化效果,因此脉冲需要紧密地重叠。此外,我们还提供了用于提取表面粗糙度的方法的详细描述,该方法在所有提出的研究中都用于表面粗糙度,并提供了一个实用的框架来表征从不同激光系统获得的消融结果。
蓝宝石食品印度有限公司根据1956年的《公司法》,以私人有限公司的私人有限公司为私人有限公司,以“萨马吉特顾问私人有限公司”的名称合并为“萨马吉顾问私人有限公司”,并由公司书记官Maharashtra Atmumbai(“ ROC”)授予公司注册证书。随后,根据2014年12月26日举行的股东大会上通过的一项特别决议,我们的公司将其名称更名为“ Sapphire Foods India Private Limited”,并由ROC向我们公司颁发了日期为2015年1月7日的新鲜公司。此后,我们的公司被转换为一家公共有限公司,根据在2021年6月15日举行的股东大会上通过的一项特殊决议,并将我们公司的名称更改为“ Sapphire Foods India India Limited”,并将日期为2021年7月8日的全新公司由ROC颁发给我们的公司。有关公司名称和注册办公室地址的更改的详细信息,请参阅第190页的“历史和公司事务 - 我们公司的简短历史记录以及我们公司注册办公室的变更”。
高带gap(较短的波长)材料由III-V半导体组合形成,允许在紫外线范围内进行辐射排放。通过改变铝,粘液和凝胶的比率,可以获得特定的发射波长。UV LED进一步分类为UVA,UVB和UVC LED。在UV和UVA LED附近使用Ingan在活动区域中使用Ingan,并且主要在蓝宝石底物上生长。氮化铝含量是低于365 nm的波长的首选材料。对于发射较短的紫外线波长的设备,需要具有更大铝含量的组合物。蓝宝石底物含有氮化铝或氮化铝铝铝层,也用于提高较短波长的LED质量[4]。
摘要 — 本文介绍了如何配置一个流行的、商业上可用的软件包,用于解决基于有限元方法 (FEM) 的偏微分方程 (PDE),以有效地计算轴对称介电谐振器的回音壁 (WG) 模式的频率和场。该方法具有可追溯性;它利用 PDE 求解器接受所谓“弱形式”中麦克斯韦方程解的定义的能力。提供了用于估计 WG 模式的体积、填充因子以及在封闭(开放)谐振器的情况下的壁(辐射)损耗的相关表达式和方法。由于没有施加横向近似,即使对于低、有限方位角模式阶的准横向磁/电模式,该方法仍然准确。通过对几个非平凡结构进行建模,证明了该方法的通用性和实用性:(i)两个不同的光学微腔[一个由二氧化硅制成的环形,另一个是AlGaAs微盘];(ii)三阶蓝宝石:空气布拉格腔;(iii)两个不同的低温蓝宝石WG模式谐振器;(ii)和(iii)都在微波X波段工作。通过将(iii)之一拟合到一组测量的谐振频率,可以估算出蓝宝石在液氦温度下的介电常数。
本工作采用金属有机化学气相沉积(MOCVD)技术分别在GaN模板和蓝宝石衬底上沉积β-Ga 2 O 3 薄膜,制备相应的β-Ga 2 O 3 薄膜金属-半导体-金属(MSM)光电探测器(PD)。比较这两种异质外延β-Ga 2 O 3 薄膜PD的性能,发现氧空位是造成差异的原因。GaN上β-Ga 2 O 3 PD的响应度随叉指间距的增加而增大,而蓝宝石上β-Ga 2 O 3 PD的行为则相反。提出了MSM结构的光电导模型,表明氧空位在上述观察中起着关键作用。同时,氧空位对光生空穴的捕获不仅增强了响应度,而且延迟了响应时间。该工作为异质外延β-Ga2O3薄膜PD的进一步优化奠定了基础。