随着生物医学测试方法的快速发展和生物医学数据的爆炸性增长,多模式数据可以更好地满足疾病的精确诊断,例如医学图像和组织学信息可以更全面地反映人的状况。这为研究人员提供了一个难得的机会,可以对生物医学数据,深度采矿和数据融合以及医学研究发现进行多模式学习。在收到的文章中,Asim等。使用多模式学习来预测miRNA序列的关键miRNA,Yan等人。改善宿主病毒间相互作用的预测。这些文章在分子生物学研究中证明了多模式学习的广泛前景。同时,对医学图像的分析在临床应用中也起着重要作用。Refaee等。差异。Sato等。 使用多模式学习来提高评估质量,以预测质子治疗的剂量范围。 Jovel和Greiner讨论了机器学习方法在生物医学研究中的应用。 这些文章表明,多模式学习技术的发展在生物医学数据分析中可以很好地发挥作用。 所有这些文章都展示了人工智能技术的广泛前景,例如生物医学领域中的多模式学习,深度学习和机器学习。 通过对抗生成网络提高算法的鲁棒性对不同的成像设备。Sato等。使用多模式学习来提高评估质量,以预测质子治疗的剂量范围。Jovel和Greiner讨论了机器学习方法在生物医学研究中的应用。这些文章表明,多模式学习技术的发展在生物医学数据分析中可以很好地发挥作用。所有这些文章都展示了人工智能技术的广泛前景,例如生物医学领域中的多模式学习,深度学习和机器学习。通过对抗生成网络提高算法的鲁棒性对不同的成像设备。尽管多模式学习在生物医学数据上具有有希望的应用,但是在处理多模式医学数据集时,面临许多挑战,例如Park等人。如何探索不同模态数据的优势特征,不同数据之间的固有相关性,对某些单一模态数据的过度依赖性以及模型可解释性和鲁棒性的问题仍然需要广泛的研究人员涉及。总而言之,这些文章是对生物医学研究中人工智能(AI)快速增长的探索。这些研究利用多模式学习
• 工党大胆押注 10 亿澳元投资澳大利亚量子初创企业,Nick Bonyhady,《澳大利亚金融评论报》,2024 年 4 月 29 日。 • 纳税人对美国计算机公司 PsiQuantum 充满信心,Joe Kelly 和 Geoff Chambers,《澳大利亚人报》,2024 年 4 月 29 日。 • 澳大利亚与 PsiQuantum 签署价值近 10 亿澳元的协议,以打造世界上第一台“有用的”量子计算机,K. Sato、C. Zonca、L. Ryan、S. Austin,ABC News,2024 年 4 月 30 日。 • 工党部长在达成 10 亿澳元量子交易之前进行了两年的魅力攻势,Geoff Chambers 和 Sarah Elks,《澳大利亚人报》,2024 年 5 月 1 日。 • 工党对 PsiQuantum 的一大笔赌注有很多问题,Paul Fletcher,《澳大利亚金融评论报》,2024 年 5 月 5 日。 • PsiQuantum 交易每年的管理成本为 250 万美元,丹汉姆·萨德勒 (Denham Sadler),《信息时代》,2024 年 5 月 16 日。
包括配位化合物hideki amii amii@ ・开发合成有机反应及其应用MD。Zakir Hossain Zakir@ ・ sic基板上的外延石墨烯的化学修改Okutsu Okutsu@ ・物理化学,光化学和晶体生长Hiroaki Ozaki ozaki ozaki h-ozaki h-ozaki@ sumiyoshi y-sumiyoshi@ ・研究由激进分子组成的瞬时物种和复合物的分子结构研究Masashi sonoyama sonoyama@ ・生物分子科学,蛋白质的生物物理化学,蛋白质的生物物理化学,生物镜,生物信息信息,生物信息,生物信息hiroshi takahashashashashashashashashashashashashashase@ shig shig shusta thaug thagi y thaber thagial thabera thabera thagia thage thabera thage thabera thabera thabera thabera thabera thabera thabera模型stakeda@ ・受体的功能分析,蛋白质自组装的表征和应用Nakamura nakamura@@新型π共轭系统的结构和属性,包括
Karsten Neuhoff (DIW Berlin; Technical University Berlin), Misato Sato (Grantham Research Institute on Climate Change and the Environment, LSE), Fernanda Ballesteros (DIW Berlin; Technical University Berlin), Christoph Böhringer (Carl von Ossietzky University of Oldenburg), Simone Borghesi (European University Institute; University of Siena), Aaron Cosbey (小世界),Katsuri DAS(德里 - NCR加兹阿巴德管理技术研究所),罗兰·伊斯默(Roland Ismer)(波茨坦大学),安格斯·约翰斯顿(University of Potsdam),安格斯·约翰斯顿(牛津大学),佩德罗·利纳雷斯(Pedro Linares),佩德罗·利纳雷斯(Pedro Linares)(技术研究所; comillas Pontifical University; comillas Pontifical University)弗雷伯格(Freiburg),爱丽丝·皮洛特(Alice Pirlot)(日内瓦研究生研究所),菲利普·奎里恩(CNRS,CIRID),Knut Einar Rosendahl(挪威生命科学大学),Aleksander Sniegocki,Aleksander Sniegocki(沃沙河改革研究所),Harro van Asselt(Harro van Asselt),Harro Van Asselt(剑桥大学)和Lars Zeterberg(Lars Zeterberg)(IIV)。
1。Philibert,C。可再生能源交叉边界:Ammonia等。在NH3事件中。2017。鹿特丹。2。Millar,R。等人,累积碳预算及其含义。牛津经济政策评论,2016年。32(2):p。 323-342。3。Aika,K.,Takano,T。&Murata,S。无氯氟丁氏催化剂的制备和表征以及氨合成中的启动子效应:3。镁支持的钌催化剂。J. Catal。 1992。 136,126–140。 4。 Kitano,M。等。 使用稳定电气作为电子供体和可逆氢存储的氨合成。 自然化学。 2012。 4,934–940。 5。 Sato K.等。 在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。 化学。 SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。J. Catal。1992。136,126–140。4。Kitano,M。等。 使用稳定电气作为电子供体和可逆氢存储的氨合成。 自然化学。 2012。 4,934–940。 5。 Sato K.等。 在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。 化学。 SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。Kitano,M。等。使用稳定电气作为电子供体和可逆氢存储的氨合成。自然化学。2012。4,934–940。5。Sato K.等。 在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。 化学。 SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。Sato K.等。在氧化丙二酰烷基上支持的低晶非氨基层作为氨合成的活性催化剂。化学。SCI。 2017。 8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。SCI。2017。8,674–679。 6。 Kyriakou V,Garagounis I,Vasileiou E等。 氨的电化学合成的进展。 CATAL今天2017年。 286,2-13。 7。 ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。 法拉第讨论2016年。 190,307–326。 8。 Bañares-Alcántara,R。等,对基于氨的储能系统的分析。 2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。8,674–679。6。Kyriakou V,Garagounis I,Vasileiou E等。氨的电化学合成的进展。CATAL今天2017年。286,2-13。7。ITO Y,Nishikiori T,Tsujimura H.新型熔融盐电化学过程的工业化进步。法拉第讨论2016年。190,307–326。8。Bañares-Alcántara,R。等,对基于氨的储能系统的分析。2015,牛津大学:英国牛津大学。 p。 158。 2017。 10。2015,牛津大学:英国牛津大学。p。 158。2017。10。9 Philibert,C。生产氨和肥料:可再生能源的新机会。Olson,N。“ NH3-世界上最佳能源解决方案”,在2017年NH3活动,鹿特丹,2017年5月18日至19日。Olson,N。“ NH3-世界上最佳能源解决方案”,在2017年NH3活动,鹿特丹,2017年5月18日至19日。
ASME 美国机械工程师学会 BAM 德国联邦材料研究与测试研究所 CFR 美国联邦规章 COD 裂纹张开位移 CVI 近距离目视检查 DPI 着色渗透检查 DSM 异种金属焊缝 EPRI 电力研究机构 FMEA 故障模式影响分析 HF 人为因素 IGSCC 晶间应力腐蚀开裂 ISI 在役检查 LPT 液体渗透检测 MPI 磁粉检测 NDE 无损检测(也称为 NDT 或 NDI) NDI 无损检测(也称为 NDE) NDT 无损检测(也称为 NDE) NRC 核管理委员会 OE 操作经验 PANI 工业 NDE 评估计划 PDI 性能演示研究所 PISC 钢部件检查计划 POD 检测概率 RES 核管理研究办公室 ROC 相对操作特性 SATO 速度/精度权衡 SKI 瑞典语核电督察局 TOMES 任务、操作员、机器、环境和社会模型 英国 英国 美国 美国 UT 超声波检测 VT 视觉检测
新加坡,2025年1月6日,新加坡和日本科学家开发了技术来控制来自南洋技术大学,新加坡(NTU新加坡),大阪大学和海洛希玛大学的机器人昆虫群的科学家,开发了一种先进的Swarm Swarm Navergation Angorigh algorg,可阻止它们成为遇到挑战的领域的机器人。发表在《自然通讯》上,新算法代表了群体机器人技术的重大进步。它可以为救灾,搜索任务和基础设施检查的应用铺平道路。Cyborg昆虫是真正的昆虫,背面配有微小的电子设备 - 由光学和红外摄像机,电池和用于通信的各种传感器组成 - 使其动作受到特定任务的遥控控制。2008年,来自NTU新加坡机械和航空航天工程学院的Hirotaka Sato教授首先证明了单一幼体昆虫的控制。然而,单一昆虫不足以进行诸如搜索和救援任务的操作,地震幸存者被散开,并且有一个最佳的72小时窗口来定位它们。
发展是在日本政府对Ainu作为土著人民的正式认可之后,这导致了全国对AINU语言课程和教育材料的资金(Sato,2012年)。许多AINU学习者今天将日语说日语;因此,实用的机器翻译是Ainu振兴不可或缺的一部分。但是,宫川(Miyagawa)(2023)先前的一项研究面临着挑战,包括在不同方言之间的区分和在翻译日常对话时遇到的困难。为了解决这些问题,我们采取了以下方法。首先,我们增强了语料库。以前的研究中的Corpora主要偏向有限地区的民间传说。我们从各种方言和操作中收集并数字化资源,以确保更大的多样性。我们还引入了一种新颖的方法,用于ainu-日语翻译,可以区分方言和域,从而减少不同区域或上下文之间的措辞混乱。在本文中,我们详细介绍了方法论的细节,介绍我们的结果,并讨论了我们发现的含义,这些含义可能有助于Ainu的振兴,这也可能适用于其他低水平语言。
结合酪氨酸激酶抑制剂Cabozantinib和MTORC1/2抑制剂Sapanisertib阻断ERK途径的活性并抑制肾细胞癌中的肿瘤生长1,2,Siqi Chen 1,2,Siqi Chen 1,2,Siiaolu Yang Yang sato 1,Kazuhito 1,2 , Michael C. Wendl 1,2,4,5 , Tina M. Primeau 1 , Yanyan Zhao 1 , Alanna Gould 1 , Hua Sun 1,2 , Jacqueline L. Mudd 1 , Jeremy Hoog 1 , R. Jay Mashl 1,2 , Matthew A. Wyczalkowski 1,2 , Chia-Kuei Mo 1,2 , Ruiyang Liu 1,2 , John M. Herndon 6,7 , Sherri R. Davies 1,Di Liu 1,Xi ding 1,Yvonne A. Evrard 8,Bryan E. Welm 9,David Lum 9,Mei Yee Koh 9,Alana L. Welm 9,Jeffrey H. Chuang 10,Jeffrey H. Chuang 10,Jeffrey A.Moscow 11 1,Ryan C. Fields 4,Kian-Huat Lim 1,4,Cynthia X. Ma 1,4,Hui Zhang 3,Li ding 1,2,4,6和Feng Chen 1,4