热电材料对于废热收集非常有前途。尽管热电材料研究多年来一直在扩展,但基于二紫外线的合金仍然是近室温应用的最佳选择。在这项工作中,通过将BI 0.4 SB 1.6 TE 3与新兴的热电材料SB 2 SI 2 TE 6混合来实现≈38%的ZT(300-473 K)至1.21,这是实现的,这比大多数Bi Y SB 2-2- Y SB 2- Y SB 2- Y Y TE TE 3 - 基于大多数的组合。BI 0.4 SB 1.6 TE 3矩阵和SB 2 Si 2 Si 2 Si 2 TE 6基于有序的原子布置之间的独特接口区域促进了这种增强,从而促进电荷载体以最小的散射运输,从而克服了一种限制ZT ZT增强的ZT ZT增强的ZT。同时,同一区域中的高密度脱位可以有效地散射声子,从而将电子传输解耦。这会导致373 K时热电质量因子的56%增强,从原始样品的0.41到复合样品的0.64。在𝚫 t = 164 K时以高效效率为5.4%的单腿设备进一步证明了SB 2 SI 2 SI 2 TE 6合成策略的效率,以及在改善相对低的材料的材料性能方面的降水 - 矩阵界面微观结构的重要性。
图2。CS中的各向同性超导间隙(V 0.86 TA 0.14)3 SB 5。 a。 费米表面映射。 b。 在k F处的温度依赖性EDC在a中标记为黑线的切割。 c-e,分别与a,b和d fs一起进行k f。 f,检查的位置K f。 g,从拟合到k f的EDC的SC间隙幅度。 阴影区域表示错误条。CS中的各向同性超导间隙(V 0.86 TA 0.14)3 SB 5。a。费米表面映射。b。在k F处的温度依赖性EDC在a中标记为黑线的切割。c-e,分别与a,b和d fs一起进行k f。f,检查的位置K f。g,从拟合到k f的EDC的SC间隙幅度。阴影区域表示错误条。
涡旋和束缚态是理解超导体电子特性的有效方法。最近,在新发现的 kagome 超导体 CsV3Sb5 中观察到了表面相关的涡旋核心态。虽然尖锐的零能量电导峰的空间分布看起来与来自超导狄拉克表面态的马约拉纳束缚态相似,但其起源仍然难以捉摸。在本研究中,我们利用低温扫描隧道显微镜/光谱法对两种化学掺杂的 kagome 超导体 Cs(V1xTrx)3Sb5 (Tr=Ta 或 Ti) 中的可调涡旋束缚态 (VBS) 进行了观测。与原始的 CsV3Sb5 相反,CsV3Sb5 衍生的 kagome 超导体表现出全间隙配对超导性,同时没有长程电荷序。零能量电导图表明涡旋晶格发生了场驱动的连续重新取向转变,表明存在多带超导性。Ta掺杂的CsV3Sb5表现出Caroli-de Gennes-Matricon束缚态的常规十字形空间演化,而Ti掺杂的CsV3Sb5表现出尖锐的、非分裂的零偏压电导峰(ZBCP),该峰在涡旋的长距离上持续存在。非分裂ZBCP的空间演化对表面效应和外部磁场具有鲁棒性,但与掺杂浓度有关。我们的研究揭示了多带化学掺杂CsV3Sb5系统中可调谐的VBS,并为先前报道的kagome超导体表面非量子极限条件下的Y形ZBCP提供了新的见解。2024年中国科学出版社。由爱思唯尔和中国科学出版社出版。版权所有。
大型垂直压电性,5–7可调节带隙,8,9和大型Dzyaloshinskii – Moriya互动(DMI)。10,11因此,近年来,2d Janus材料在纳米科学和纳米技术方面受到了广泛关注。迄今为止,已经在实验中发现了几种磁性janus材料或从理论上预测。例如,他等人。预测,基于CR的Janus Mxene Monolayers CR 2 CXX 0(x,x,x 0 = h,f,cl,br,oh)的NE´EL温度最高为400K。12同样,Akgenc等人。预测基于CR的Janus MXENE的单层CRSCC中的居里温度为1120 K,这表明对未来的Spintronic应用提出了承诺的候选者。13 Jiao等。 提出了新的2d Janus Cr 2 O 2 Xy(X = Cl,Y = Br/I)单层,并研究了使用菌株从铁磁到抗铁磁状态的相过渡,提出Cr 2 O 2 XY作为旋转型应用的潜在材料。 14此外,Zhang等人。 预测具有较大山谷极化的高度稳定的室温磁磁性janus vsse单层,在Valleytronics V(S,SE)2中具有潜在的应用。 15研究13 Jiao等。提出了新的2d Janus Cr 2 O 2 Xy(X = Cl,Y = Br/I)单层,并研究了使用菌株从铁磁到抗铁磁状态的相过渡,提出Cr 2 O 2 XY作为旋转型应用的潜在材料。14此外,Zhang等人。 预测具有较大山谷极化的高度稳定的室温磁磁性janus vsse单层,在Valleytronics V(S,SE)2中具有潜在的应用。 15研究14此外,Zhang等人。预测具有较大山谷极化的高度稳定的室温磁磁性janus vsse单层,在Valleytronics V(S,SE)2中具有潜在的应用。15研究
非弹性散射过程通常会引入载体之间的摩擦,并降低光子,声子和电子的传输特性。但是,我们预测,与降低导热率中的作用相反,四频散射主导了硼芳烃(BAS)和硼抗氧化物中的近距离辐射热传递(NFRHT)。与单独的三个子散射相比,包括四个子散射在两个BAS薄片之间的总热量量增加了近400倍。这种非直觉增强是由四个频率散射激活的大量NFRHT通道产生的,胜过在谐振频率下表面声子polaritons的耦合强度降低的效果。此外,我们指出的是,在某些其他系统中,四频散射减少了NFRHT。
Weise,2007年)。SSMC可能具有不同的形状和宪法,例如环,中心分钟和倒置重复形状。另外,它们可能是连续的,不连续的,单,多,新中心,复杂的,或形成其他稀有亚组,如Liehr 2023中所述。最小的SSMC亚组之一是由所谓的复杂SSMC组成的,它们包含染色体材料,该染色体材料源自多个,通常是两个染色体(Trifonov等,2008; Liehr等,2013; Liehr,2023)。SSMC的临床表现显示出显着的可变性,并且在常规核型分析中意外检测到它们(Liehr等,2010)。在我们的常规染色体分析中,发现一个14个月大的男孩患有SSMC。r带技术显示47,XY,+MAR(ISCN,2020)。他父亲的核型为46岁,XY,而在他的母亲中,发现了染色体8和14之间的平衡倒数易位。
堆叠自由度是调整材料特性的关键因素,并且已在分层材料中进行了广泛的研究。最近发现Kagome超导体CSV 3 SB 5在T CDW〜94 K下方显示出三维CDW相位。尽管对内平面调制进行了彻底的研究,但平面外调制仍然模棱两可。在这里,我们的极化和温度依赖性拉曼测量结果揭示了C 6旋转对称性的破坏,并且在大约120°的三个不同域的存在下,彼此之间存在三个不同的域。观察结果表明,CDW相可以自然解释为2C交错阶相,相邻层显示相对π相移。此外,我们在大约65 K处发现了一阶结构相变,这是由于堆叠断层而引起的堆叠顺序diSorder相变,并受到CS相关唱片模式的热磁滞行为的支持。我们的发现突出了CSV 3 SB 5中堆叠自由度的重要性,并提供了结构见解,以理解超导性和CDW之间的纠缠。
摘要:在这项工作中,我们研究了Li 2 O -SB 2 O 3 -PBO -GEO 2 -CR 2 -CR 2 O 3玻璃系统的辐射屏蔽特征,不同能量的玻璃系统范围为0.284至1.33 MeV。发芽玻璃的最大线性衰减系数(LAC)为0.680-0.707 cm-1,报告为0.284 MeV,而最小lac在1.33 MEV处观察到,并且在0.159-0.159-0.159-0.166 cm--1-1.66 cm-1中变化。由于添加了Cr 2 O 3,因此发现了这些眼镜的lac增加,并且编码为C5(Cr 2 O 3的0.5 mol%)的眼镜具有最高的lac。研究了带有不同含量的Cr 2 O 3的选定玻璃的一半值层(HVL),结果表明,HVL在低能量时很小,在0.284 MEV时为0.98-1.02 cm,从1.328-1.383 cm处于0.347 MEV。在1.33 MeV处观察到最大HVL,C5的最大HVL等于4.175 cm,C1观察到4.175 cm。报告了目前眼镜的第十个值层(TVL)值,结果表明,随着密度从3.07增加到3.2 g/cm 3,TVL从3.388降低到3.256 cm,在0.284 MEV时从13.413 cm下降到13.413 cm,在1.173 mev处降低至12.868 cm。
高质量的III – V狭窄带隙半导体材料具有强旋转 - 轨道耦合和大地E G-FACTOR为高速电子,旋转型和量子计算的领域的下一代应用提供了一个有希望的平台。抗抗氧化抗抗酮(INSB)提供狭窄的带隙,高载体迁移率和较小的有效质量,因此在这种情况下非常吸引人。实际上,近年来,这种伴侣引起了极大的关注。然而,高质量的杂质二维(2D)INSB层非常困难地意识到,由于所有常见的半导体底物的较大晶格不匹配。另一种途径是独立式单晶2D INSB纳米结构,即所谓的纳米层的生长。在这里,我们证明了基于INSB纳米型ags的弹道约瑟夫森结构设备的制造,其ti/nb接触显示,显示出栅极可触发的接近性诱导的超恒电流,最高50 na,在250 mk和可观的多余电流。这些设备显示了次谐波间隙结构的明确特征,表明连接处的相位交通运输和接口的高透明度。这将INSB纳米型植物视为高级量子技术的多功能且方便的2D平台。