俄罗斯的人工智能战略:国有企业的作用 2020 年 11 月 作者:Stephanie Petrella、Chris Miller 和 Benjamin Cooper 摘要:2017 年,俄罗斯总统弗拉基米尔·普京宣布,无论哪个国家成为人工智能 (AI) 的领导者,“都将成为世界的统治者”。然而,俄罗斯在人工智能能力方面远远落后于中国和美国等竞争对手。俄罗斯促进人工智能技术发展的战略是什么?俄罗斯精英群体在制定这一战略方面扮演什么角色?俄罗斯的人工智能发展战略的独特之处在于,它不是由政府或私营部门主导,而是由国有企业主导。政府对俄罗斯最大的科技公司 Yandex 的不信任,使该公司被排除在国家人工智能规划之外。与此同时,俄罗斯国防集团 Rostec 公开表示,它更关注其他高科技优先事项,而不是人工智能。因此,俄罗斯的人工智能开发被交给了国有银行 Sberbank,该银行牵头制定了政府支持的人工智能投资计划。俄罗斯联邦总统弗拉基米尔·普京在 2017 年宣称,无论哪个国家成为人工智能 (AI) 的领导者,“都将成为世界的统治者”。1 对于普京来说,人工智能带来的广泛能力为增强国家在国际舞台上的实力提供了可能性。人工智能可用于提高军事能力、推进科学和医学发展以及提高工业效率。普京宣称,俄罗斯军方正试图利用人工智能,用“现代武器系统,包括基于数字技术和人工智能的武器系统”取代旧式武器系统。2 尽管官员们大肆宣扬人工智能的好处,但俄罗斯在人工智能能力方面的许多指标都远远落后于其他国家。从 1996 年到 2017 年,俄罗斯的人工智能能力远远落后于其他国家。
完整作者列表:Ozen,Melis;科克大学科学与工程研究生院;科克大学硼与先进材料应用与研究中心 Yahyaoglu,Mujde;科克大学科学与工程研究生院;科克大学硼与先进材料应用与研究中心 Candolfi,Christophe; Jean Lamour 研究所,Veremchuk,Igor;马克斯普朗克固体化学物理研究所,凯撒,菲利克斯;马克斯普朗克固体化学物理研究所、化学金属科学 Burkhardt,Ulrich; MPI CPfS,化学冶金学 Snyder,G.;西北大学,材料科学 Grin,Yuri; MPI CPfS,化学金属科学 Aydemir,Umut;科克大学化学系,化学;科克大学硼与先进材料应用与研究中心
S(ⅱ)的2 p 1/2和2 p 3/2的结合能分别位于163.6和162.5 eV,S(ⅱ)的2 p 1/2和2 p 3/2的结合能分别位于163.6和162.5 eV,
必须充分利用它们的物理特性并成功实现器件,例如各种成功的 III-V 半导体器件 40,41 ——最终目标是外延和单晶生长。Sb2Te3(以及其他拓扑绝缘体,如 Bi2Te3 和 Bi2Se3)的外延膜已通过分子束外延工艺直接生长,29,30 该技术在批量生产中显示出其局限性。另一方面,化学气相沉积技术存在形态控制不佳的问题,我们专门研究了 MOCVD 在这方面的研究。 TI 生长中常用的衬底,例如 Si(100)、Si(111) 和 Al 2 O 3 (0001),与 Sb 2 Te 3 (以及一般的 TI) 存在明显的晶格失配,因此在存在旋转畴的情况下,会生长为取向性较差的多晶层 23,32 – 34 ,只有少数例外 42,43
这是以下文章的已接受版本:Harikesh, P. C., Surendran, A., Ghosh, B., John, R. A., Moorthy, A., Yantara, N., . . . Mathews, N. (2020). Cubic NaSbS2 as an ionic‑electroniccoupled semiconductor for switchable photovoltaic and neuromorphic device applications. Advanced Materials, 32(7), 1906976‑,最终版本已发布于 https://doi.org/10.1002/adma.201906976。本文可根据 Wiley 自存档政策 [https://authorservices.wiley.com/authorresources/Journal‑Authors/licensing/self‑archiving.html] 用于非商业用途。
完整作者列表: Slade, Tyler;西北大学,化学系 Grovogui, Jann;西北大学,材料科学与工程系 Kuo, Jimmy;西北大学,材料科学与工程系 Anand, Shashwat;西北大学,材料科学与工程系 Bailey, Trevor;密歇根大学,物理系 Wood, Max;西北大学,材料科学与工程系 Uher, Ctirad;密歇根大学,物理系 Snyder, G.;西北大学,材料科学与工程系 Dravid, Vinayak;西北大学,材料科学与工程系 Kanatzidis, Mercouri;西北大学,化学系
使用SN-3AG-0.5 Cu合金将BI 0.5 SB 1.5 TE 3热电(TE)元件直接焊接到Cu电极。界面是声音,粘结强度令人满意(8.6 MPa)。然而,在150 C的高温存储(HTS)测试中,焊料层迅速耗尽了300 h和600 h,粘结强度大幅降至1.5 MPa。通过在TE元件上的电压层电压层进行电镀,尽管导致低粘结强度为1.9 MPa。在BI 0.5 SB 1.5 TE 3元件上添加富含SN的薄膜和Ni屏障层导致高粘结强度为12.1 MPa,仅在150°C的HTS可靠性测试1000 h后仅略微降低。 BI 0.5 SB 1.5 TE 3 / CU接头的声音接口即使在175 C下HTS后仍保持其稳定性1000 h。
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
GaSb 在长波长器件中有许多应用,例如带间级联激光器和红外光电探测器 [1-2]。将 GaSb 相关材料单片集成到硅上对于扩展长波长器件的功能和硅平台上的光子集成具有很高的吸引力 [3]。此外,考虑到现代智能手机中红外设备(包括传感器和投影仪)的日益普及,集成到硅上是降低制造成本、减小尺寸和提高产量的有效解决方案。然而,与 GaAs/Si 和 InP/Si 材料系统相比,GaSb/Si 异质外延还远未成熟。在本研究中,以在 GaAs 衬底上生长的 GaSb 为参考,我们研究了两种不同的集成方案:在 GaAs-on-Si 模板上进行 GaSb 的界面失配 (IMF) 生长和使用长宽比捕获技术直接在 V 型槽 Si 上生长 GaSb。
表2。原子坐标和Zr 5 SB 2.36(1)RU 0.64的等效各向同性位移参数。u eq定义为正交u ij张量的痕迹的三分之一(Å2)。