©2024 Quantum Corporation。保留所有权利。您复制本手册的权利受版权法的限制。法律禁止未经量子公司的书面授权进行副本或改编,并构成了对法律的惩罚。ActiveScale, DXi, DXi Accent, FlexSync, FlexTier, iLayer, Lattus, Myriad, Quantum, the Quantum logo, QXS, Scalar, StorNext, SuperLoader, Unified Surveillance Platform, USP, Vision, and Xcellis are either registered trademarks or trademarks of Quantum Corporation and its affiliates in the United States and/or other countries.所有其他商标都是其各自所有者的财产。量子规格可能会发生变化。
• σ 𝑖 𝑐 𝑖 𝑂 𝑖 ⊗ ρ 𝑖 • 𝑐 𝑖 是系数 • 𝑂 𝑖 是 X、Y、Z 基础上的测量值 • ρ 𝑖 是 |0⟩ 、|1⟩、|+⟩、| 𝑖 ⟩ 状态的初始化
将杂原子引入石墨烯是调节其催化,电子和磁性特性的强大策略。与氮(N)和硼(B)掺杂的石墨烯的变化时,目前缺乏碳(C)网格中的一种可扩展的企业过渡金属原子的方法,从而限制了模型系统研究的应用兴趣。这项工作提出了生长的合成,从而使钴(CO)与Ni(111)底物上石墨烯中的镍(Ni)原子一起掺入。单个原子在Graphene双空缺中共价稳定,相对于C原子,CO负载范围为0.07至0.22%,可通过合成参数控制。结构表征涉及可变温度的扫描隧道显微镜和AB IN-TIO计算。将共同编码的层转移到透射电子显微镜网格上,通过扫描透射电子显微镜和电子能量损耗光谱法进行了稳定性。此方法对旋转,气体传感,电化学和催化的应用有望,以及对类似金属的石墨烯掺入的潜在扩展。
抽象的低地球轨道(LEO)卫星网络正在进行爆炸性扩展,以便为地球上任何地方的数量用户提供高速互联网。然而,作为一个网络物理网络,LEO网络的可持续扩展遭到了其苛刻,拥挤和不平衡的物理环境的影响。该立场论文对LEO网络的可伸缩性进行了两个物理约束:拥挤的外层空间的卫星安全距离的扩展限制,以及统一LEO网络能力供应供应与地理位置非统一的全球用户需求的规模限制。传统的网络研究对这些物理缩放限制的关注较少,这可能意味着呼吁进行网络物理共同设计,以帮助LEO网络在受到挑战的太空环境中发展。
基于线性射频阱中捕获离子的量子比特由于其高保真度的操作、全对全连接和局部控制程度而成为量子计算的成功平台。原则上,可以限制在单个 1D 寄存器中的基于离子的量子比特数量没有根本限制。然而,在实践中,长捕获离子晶体存在两个主要问题,这些问题源于其运动模式在扩大时会“软化”:离子运动的高加热率和密集的运动谱;两者都会阻碍高保真量子比特操作的性能。在这里,我们提出了一种使用大离子晶体的量子计算的整体、可扩展架构来克服这些问题。我们的方法依赖于动态操作的光势,它可以瞬间将离子晶体分割成可管理大小的单元。我们表明这些单元表现为几乎独立的量子寄存器,允许所有单元上都有并行纠缠门。重新配置光学势能的能力保证了整个离子晶体的连通性,并且还实现了高效的中电路测量。我们研究了大规模并行多量子比特纠缠门的实现,这些门可同时在所有单元上运行,并提出了一种协议来补偿串扰误差,从而实现大规模寄存器的全面使用。我们说明了这种架构对于容错数字量子计算和模拟量子模拟都是有利的。
微生物生长培养基通常分为两类:化学成分确定型或未确定型。确定型培养基具有可重复性、大分子和微量营养素定制等优势。然而,生产化学成分确定型培养基既费力又昂贵,而且通常无法支持那些代谢需求尚不明确的苛刻生物。另一方面,未确定型培养基通常含有不同数量的复杂原料,如酶消化物(蛋白胨和胰蛋白胨)和提取物,这些原料的化学成分无法完全确定。使用这些丰富营养源的巨大好处在于它们能够支持多种生物的生长、培养基制备简单且成本相对较低。微生物学领域的开创性工作在很大程度上依赖于未确定型培养基,因为它具有广泛的有效性,如今它在微生物研究和开发中仍然很流行。
经典分布式密钥生成协议(DKG)由于其在区块链中的广泛应用而被重新效果。尽管已经努力改善了DKG的沟通,但由于各种挑战,实际的大规模部署仍未出现,包括在其对抗性情况下的大量计算和沟通(尤其是广播)开销。在本文中,我们为基于DLOG的加密系统提出了一个实用的DKG,即使面对最大程度的拜占庭节点,它即使在最大程度的拜占庭节点上也可以实现(Quasi)线性计算和每节点成本。此外,我们的协议可以防止自适应对手,这可能会破坏所有节点的一半。我们改进的关键在于将最昂贵的操作委派给一个任何信任小组,以及一组自适应安全技术。该组是随机采样的,由少数个体组成。人口只相信该小组中至少一个成员是诚实的,而不知道哪一个成员。此外,我们提出了一个通用变压器,即使参与者的权重不同,也使我们能够有效地部署常规分布式协议。此外,我们基于区块链和数据分散网络(例如IPF)引入了扩展的广播频道,以恒定大小的区块链存储为代价,可靠地广播任意大小。与巴比伦最近的检查点方法(奥克兰,2023年)相比,我们的比特币交易费用要小得多。我们的dkg导致Filecoin检查点机制的完全实例化,其中所有验证器(POS)区块链的所有验证者定期运行DKG和阈值签名,以在比特币上创建检查点,以增强POS链的安全性。对于2 12个验证者,我们的成本仅为巴比伦方法所产生的费用的0.4%。
经典分布式密钥生成协议(DKG)由于其在区块链中的广泛应用而被重新效果。尽管已经努力改善了DKG的沟通,但由于各种挑战,实际的大规模部署仍未出现,包括在其对抗性情况下的大量计算和沟通(尤其是广播)开销。在本文中,我们为基于DLOG的加密系统提出了一个实用的DKG,即使面对最大程度的拜占庭节点,它即使在最大程度的拜占庭节点上也可以实现(Quasi)线性计算和每节点成本。此外,我们的协议可以防止自适应对手,这可能会破坏所有节点的一半。我们改进的关键在于将最昂贵的操作委派给一个任何信任小组,以及一组自适应安全技术。该组是随机采样的,由少数个体组成。人口只相信该小组中至少一个成员是诚实的,而不知道哪一个成员。此外,我们提出了一个通用变压器,即使参与者的权重不同,也使我们能够有效地部署常规分布式协议。此外,我们基于区块链和数据分散网络(例如IPF)引入了扩展的广播频道,以恒定大小的区块链存储为代价,可靠地广播任意大小。与巴比伦最近的检查点方法(奥克兰,2023年)相比,我们的比特币交易费用要小得多。我们的dkg导致Filecoin检查点机制的完全实例化,其中所有验证器(POS)区块链的所有验证者定期运行DKG和阈值签名,以在比特币上创建检查点,以增强POS链的安全性。对于2 12个验证者,我们的成本仅为巴比伦方法所产生的费用的0.4%。