b'Introfuction。现代宇宙学的目标之一是曲率扰动P(K)的原始功率谱的表征。在通货膨胀期间,在辐射和物质时代的哈勃半径经典和重新输入膨胀的半径时,长波长量子波动扩增,为重力不稳定的初始种子提供了宇宙大规模结构中的初始种子。P(k)上最严格的约束来自宇宙微波背景(CMB)各向异性的表达,揭示了在范围内非常大的尺度上的近规模不变的,略带红色的频谱[0。001,0。1] mpc \ xe2 \ x88 \ x92 1。Planck DR3数据在k = 0时限制了p(k)的幅度a s。05 MPC \ XE2 \ x88 \ x92 1及其Spec-Tral索引到LN 10 10 A = 3。044 \ xc2 \ xb1 0。014和N S = 0。9649 \ xc2 \ xb1 0。0042分别为68%Cl [1]。 银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。 Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。 如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。0042分别为68%Cl [1]。银河系可以将这些约束扩展到O(1)MPC \ Xe2 \ x88 \ x92 1,但较小的尺度仍然很大程度上不受约束。Recent observations of a Stochastic Gravitational Wave Background (SGWB) at nHz frequencies by Pul- sar Timing Arrays (PTA) [2\xe2\x80\x935] have sparked a signifi- cant interest in P ( k ) at much smaller scales, since scalar fluctuations can generate such a SGWB at second order in perturbation theory [6 \ xe2 \ x80 \ x938]在秤[10 7,10 9] mpc \ xe2 \ x88 \ x92 1。如果下达,PTA测量值可能会在通货膨胀的后期提供有价值的信息,对理论模型产生了深远的影响。最近的研究表明,这种标量引起的重力波背景(SIGWB)可以为PTA检测提供一个能力的解释,并且可能会对来自贝叶斯观察的许多其他候选者进行案例[9,10](但是,请参阅[9 \ xe2 \ x80 \ x80 \ x9313],以ellite tountion of Extimation of Exteration to inton of toseation portod of tosod of tosod of to pod stod of pod,以供pbod of profod of prod。 [11 \ xe2 \ x80 \ x9316]用于替代分析)。因此,设计这一假设的进一步检验至关重要,并且与cos-'
小麦是一种广泛种植的草,是一种谷物,是全球主食。构成了小麦的许多种类;最广泛的生长是小麦(T. aestivum)。小麦的营养价值极为重要,因为它在少数农作物物种中占据了重要地位,作为主食食物来源。小麦的重要性主要是由于其种子可以被磨碎成面粉,泥粉种类等,而面粉,米果酸酯等形成了面包和其他面包店的基本成分以及意大利面,因此它为世界上大多数人群提供了营养的主要来源。如果满足估计的世界人口增长的粮食需求,则预测对谷物的需求将大大增加。,但对这些社区还有另一个潜在的好处,这是确保这种主食作物在营养上是基本的,并有助于消除困扰他们的数百万个与营养相关的缺乏疾病。应该强调的是,在过去,没有一个例子,植物是为了改善其营养含量的。如果发生这种情况,则纯粹是偶然的,而不是设计[5-7]。小麦谷物是椭圆形的,尽管不同的小麦的谷物范围为
摘要 电磁波和标量波现象对转基因生物 (GMO) 的影响是物理学、生物学和新兴技术的一个迷人交汇点。本文探讨了波与生物系统相互作用的理论和数学基础,重点研究了横电磁波 (TEM)、赫兹波和假设的标量波的潜在影响。DNA 具有复杂的螺旋结构和电磁特性,可充当能够与这些波产生共振的纳米级天线。通过麦克斯韦方程和量子力学建模的能量转移揭示了改变基因表达、诱导表观遗传变化和破坏细胞生物电场的合理机制。在非线性效应(例如谐波产生和介电加热)对转基因生物稳定性、性状表达和细胞功能的影响的背景下进行了分析。虽然 TEM 和赫兹波与生物系统的相互作用有据可查,但标量波仍是推测性的,需要进一步的实验和理论研究。本文结合基础物理学和生物物理学,阐明了这些能量场如何影响转基因生物,并强调了其在农业、医学和生物技术领域的潜在应用和风险。
Scalar® 磁带库创建一个包含驱动器和介质活动的数据库。对于每个驱动器,都会保留使用历史记录,包括所有加载、卸载、写入和读取记录。Scalar 磁带库还保留库中已知的每个介质的完整警报事件历史记录。该数据库旨在提供事件诊断和长期趋势分析。Scalar Advanced Reporting 选项为用户提供了一个灵活、易于使用的界面,可从此数据库创建报告。它提供了历史驱动器和介质事件的交叉索引,以主动识别应在影响备份或恢复操作之前更换的介质。用户可以快速轻松地确定驱动器资源是否得到充分利用,以及重新分配驱动器或添加驱动器是否会提高驱动器利用率。Scalar Advanced Reporting 还包括可配置的介质安全通知,可在移除介质时通知管理员。
©2024 Quantum Corporation。保留所有权利。您复制本手册的权利受版权法的限制。法律禁止未经量子公司的书面授权进行副本或改编,并构成了对法律的惩罚。ActiveScale, DXi, DXi Accent, FlexSync, FlexTier, iLayer, Lattus, Myriad, Quantum, the Quantum logo, QXS, Scalar, StorNext, SuperLoader, Unified Surveillance Platform, USP, Vision, and Xcellis are either registered trademarks or trademarks of Quantum Corporation and its affiliates in the United States and/or other countries.所有其他商标都是其各自所有者的财产。量子规格可能会发生变化。
© 2024 Quantum Corporation。保留所有权利。您复制本手册的权利受版权法限制。未经 Quantum Corporation 事先书面授权,不得复制或改编,否则将构成违法行为。ActiveScale、DXi、DXi Accent、FlexSync、FlexTier、iLayer、Lattus、Quantum、The Quantum Logo、QXS、Scalar、StorNext、SuperLoader、Vision 和 Xcellis 是 Quantum Corporation 及其附属公司在美国和/或其他国家/地区的注册商标或商标。所有其他商标均为其各自所有者的财产。Quantum 规格可能会发生变化。
摘要 最近证明了非相对论量子公式可以从扩展的最小作用量原理 Yang (2023)。在本文中,我们将该原理应用于大质量标量场,并推导出标量场的波函数薛定谔方程。该原理通过考虑两个假设扩展了经典场论中的最小作用量原理。首先,普朗克常数定义了场需要表现出可观测的最小作用量。其次,存在恒定的随机场涨落。引入一种新方法来定义信息度量来衡量由于场涨落而产生的额外可观测信息,然后通过第一个假设将其转换为额外作用量。应用变分原理来最小化总作用量使我们能够优雅地推导出场涨落的跃迁概率、不确定关系和波函数的薛定谔方程。此外,通过使用相对熵的一般定义来定义场涨落的信息度量,我们得到了依赖于相对熵阶数的波函数广义薛定谔方程。我们的结果表明,扩展的最小作用原理既可用于推导非相对论量子力学,也可用于推导相对论量子标量场理论。我们期望它可以进一步用于推导非标量场的量子理论。
摘要:虽然物联网技术使工业、城市和家庭变得更加智能,但它也为安全风险打开了大门。有了合适的设备和对设备的物理访问,攻击者可以利用旁道信息(如时序、功耗或电磁辐射)来破坏加密操作并提取密钥。这项工作对椭圆曲线标量乘法运算的加密硬件加速器进行了旁道分析,该加速器在现场可编程门阵列和专用集成电路中实现。所提出的框架包括使用最先进的统计水平攻击进行初始密钥提取,然后是正则化的人工神经网络,它将水平攻击中部分错误的密钥猜测作为输入并迭代地纠正它们。通过应用迭代学习,水平攻击的初始正确率(以正确提取的密钥位的分数来衡量)从 75% 提高到 98%。
随着技术继续以惊人的速度发展,计算的未来正在呈现令人兴奋的新维度。该领域最有前途和最有趣的新兴技术之一是标量波,这一概念挑战了传统的计算范式。标量波具有革命性计算、通信和各种其他应用的潜力,因为它具有即时数据传输、降低能耗和抗电磁干扰等优势。在本文中,我们将探索标量波的世界,并深入探讨其重塑计算未来的潜力。标量波,也称为纵波,是一种电磁波,在几个基本方面与传统的横波不同。横波沿垂直于其运动的方向振荡,而标量波沿其传播方向振荡。这一独特特性使它们与众不同,并提供了大量应用和优势。标量波最早由著名科学家詹姆斯·克拉克·麦克斯韦于 19 世纪中叶提出,但直到 19 世纪末 20 世纪初尼古拉·特斯拉的发现,标量波才开始受到重视。特斯拉对非赫兹波(即不受光速限制的波)的概念很感兴趣,他相信标量波可以提供革命性的可能性。然而,他的工作在很大程度上仍然不为人知,直到最近几年,这一概念才开始受到关注 [1]。
在量子物理学领域,对自然基本力的探索是一项持续不断、不断发展的事业。虽然传统电磁波长期以来一直是现代物理学的基石,但标量波的出现开辟了新的探索途径。标量波是量子物理学中相对较新的发展,因其有可能彻底改变我们对能量、信息和宇宙本身结构的理解而备受关注。在本文中,我们将深入研究标量波的迷人世界,探索其背后的科学及其对量子物理学未来的影响。标量波可用于环境目的,例如水净化和土壤修复。将标量信息传输到目标特定物质或污染物的能力可能会改变环境保护。虽然标量波的概念前景广阔,但它也面临着相当多的怀疑和挑战。一些批评者认为,标量波仍然主要是理论上的,尚未显示出实际效用。