Huang, T.-K.、Armstrong, B.、Schindele, P. 和 Puchta, H. (2021) 使用 CRISPR/SaCas9 和耐高温 LbCas12a 在烟草中实现高效基因靶向。植物生物技术杂志 19 , 1314–1324。Lawrenson, T.、Hinchliffe, A.、Forner, M. 和 Harwood, W. (2022)。使用新型 Lb Cas12a 变体在大麦中进行高效基因组编辑以及 sgRNA 结构的影响。 biorxiv 10.1101/2022.04.28.489853v1 Malzahn, AA, Tang, X., Lee, K., Ren, Q., Sretenovic, S., Zhang, Y., Chen, H., Kang, M., Bao, Y., Zheng, X., Deng, K., Zhang, T., Salcedo, V., Wang, K., Zhang, Y. 和 Qi, Y. (2019) 应用 CRISPR-Cas12a 温度敏感性改进水稻、玉米和拟南芥的基因组编辑。BMC 生物学 17、9。Merker, L.、Schindele, P.、Huang, T.-K.、Wolter, F. 和 Puchta, H. (2020) 使用耐温 CRISPR/LbCas12a 增强拟南芥植物体内基因靶向效率。植物生物技术杂志 18 , 2382–2384。Schindele, P. 和 Puchta, H. (2020) 改造 CRISPR/LbCas12a 以实现高效、耐高温的植物基因编辑。植物生物技术杂志 18 , 1118–1120。Weiss, T.、Crisp, PA、Rai, KM、Song, M.、Springer, NM 和 Zhang, F. (2022) 表观遗传特征极大地影响了 CRISPR-Cas9 在植物中的功效。植物生理学。
因此,已经开发出许多通过位点特异性DNA多样化实现基因及其产物定向进化的方法。其中许多方法,例如易错PCR、位点饱和诱变或嵌合体生成,都是基于序列文库的生成,然后在体外或体内筛选改良的蛋白质变体。然而,低转化率是这些方法的主要限制因素(Engqvist和Rabe,2019年)。使用可编程核酸酶的基因编辑方法的应用可以实现位点特异性的体内诱变,因此具有用于定向进化的潜力。目前,只有通过表征CRISPR(成簇的规律间隔的短回文重复序列)/Cas9(CRISPR相关)系统,才能实现大规模的定向诱变,因为与以前的系统相比,该系统具有简单性、多功能性和高精度。
CRISPR、Cas12a、CPF1、大麦、诱变、单子叶植物、基因组编辑摘要我们报告了首次成功、高效使用大麦中的 Lb Cas12a,并描述了两种新型 Cas12a 变体的开发和应用。总共我们使用二十种不同的指南比较了五种编码序列 (CDS) 变体,包括两种新型变体和两种指南架构,针对 5 种不同的靶基因。我们发现不同 CDS 版本 (0-87%) 和指南架构 (0-70%) 之间的编辑效率存在很大差异,并且表明我们的两个新型 CDS 版本在该物种的测试中大大优于其他版本。我们展示了产生的突变的遗传性。我们的研究结果强调了优化单个物种的 CRISPR 系统的重要性,并可能有助于在其他单子叶植物中使用 Lb Cas12a。正文 毛螺菌科细菌 Cas12a (Lb Cas12a) 可能是继化脓性链球菌 Cas9 (Sp Cas9) 之后植物基因组编辑中第二广泛使用的可编程核酸酶,并且具有一些潜在优势。首先,由于其对 TTTV PAM 的要求与 NGG 的 Sp Cas9 要求不同,它可用于 GC 沙漠,而 GC 沙漠通常存在于内含子、UTR 和启动子区域中。其次,Lb Cas12a 通常比 Sp Cas9 产生更大的缺失,这可能在缺失研究中有用。第三,虽然 Sp Cas9 在靶标的 PAM 近端切割产生平端,但 Lb Cas12a 在 PAM 远端区域切割产生粘端;这两个特征可能解释了使用 Lb Cas12a 实现的基因靶向发生率更高 (Wolter 和 Puchta,2019)。已知在植物中起作用的三种版本的 Lb Cas12a 针对一个大麦靶标进行了测试。首先,是水稻优化的编码序列 (CDS) (Os Cas12a) (Tang et al., 2017);其次是人类优化的 CDS (Hs Cas12a),在双子叶植物中具有功能 (Bernabé-Orts et al., 2019);第三是拟南芥优化的 CDS,包含 D156R“耐高温”突变 (tt At Cas12a) (Schindele and Puchta, 2020)。我们还创建了两个新版本,携带 D156R 突变的 Hs Cas12a (tt Hs Cas12a) 和携带 8 个内含子的 tt At Cas12 (tt At Cas12+int)。这些内含子之前曾显著提高过 Sp Cas9 的效率(Grutzner 2021),因此我们使用相同的在线工具(NetGene2 - 2.42 - Services - DTU Health Tech)在我们的 tt At Cas12+int 设计中为拟南芥选项获得了较高的剪接置信度。
