认识Jaimee Lupton:Pr Whiz,Beauty and Haircare企业家,以及星期一的联合创始人,这是一系列豪华的可承受的崇高护发,使世界风靡一时。自两年多以前推出以来,该品牌的崛起一直是指数的。在前四个星期内出售了六个月的股票,而周一的漂亮的粉红色洗发水和护发素现在正在从世界上最大的零售商的货架上飞来,从Coles,Tesco到Amazon和Walmart。到目前为止售出了超过800万瓶,以及不断增长的美容行业的赞誉,周一实际上彻底改变了超市洗发水游戏。
埃里克·施密特博士简历 埃里克·施密特是 Schmidt Futures 的创始人。埃里克还是谷歌控股公司 Alphabet Inc. 的技术顾问,负责为公司领导者提供技术、商业和政策问题方面的建议。埃里克于 2015 年至 2018 年担任 Alphabet 执行董事长,于 2011 年至 2015 年担任谷歌执行董事长。2001 年至 2011 年,埃里克担任谷歌首席执行官,与创始人谢尔盖·布林和拉里·佩奇一起负责监督公司的技术和商业战略。在他的领导下,谷歌大幅扩展了基础设施并实现产品多元化,同时保持了强大的创新文化,从硅谷初创公司发展成为全球技术领先者。加入谷歌之前,埃里克曾担任 Novell 董事长兼首席执行官以及 Sun Microsystems, Inc. 首席技术官。此前,他曾在施乐帕洛阿尔托研究中心 (PARC)、贝尔实验室和 Zilog 担任研究人员。他拥有普林斯顿大学电气工程学士学位以及加州大学伯克利分校计算机科学硕士和博士学位。Eric 于 2006 年当选为美国国家工程院院士,并于 2007 年入选美国艺术与科学学院院士。自 2008 年起,他一直担任新泽西州普林斯顿高等研究院的理事。自 2012 年起,Eric 一直担任布罗德研究所和梅奥诊所的董事会成员。Eric 曾于 2009 年至 2017 年担任总统科学顾问委员会成员。2013 年,Eric 和 Jared Cohen 合著了《纽约时报》畅销书《新数字时代:改变国家、企业和我们的生活》。2014 年 9 月,Eric 出版了他的第二本纽约时报畅销书《谷歌是如何运作的》,由他和 Jonathan Rosenberg 与 Alan Eagle 合著。 2019 年 4 月,埃里克出版了他的第三本《纽约时报》畅销书《万亿美元教练:硅谷比尔·坎贝尔的领导力手册》,这本书是他与乔纳森·罗森伯格和艾伦·伊格尔合著的。埃里克于 2016 年成为国防部创新委员会主席,并于 2017 年 1 月被国防部长阿什顿·卡特授予国防部杰出公共服务奖章。他是美国国家人工智能安全委员会主席。他是美国宇航局国家空间委员会用户顾问小组的成员,该小组由副总统担任主席。埃里克是麻省理工学院访问创新研究员、麻省理工学院 IQ 顾问委员会成员、麻省理工学院未来工作委员会成员,麻省理工学院 CEO 顾问委员会成员、麻省理工学院施瓦茨曼计算机学院顾问委员会成员。Eric 是 Schmidt Futures 的创始人,该公司通过深思熟虑地应用科学技术并跨领域合作,帮助杰出人士为他人做更多的事情。
*此模型是隐式或显式的:PhyloSub(Jiao等,BMC Bioinform。2014),门片(Deshwar等人,基因组Biol。2015),Citup(Malikic等人,生物信息学2015),Lichee(Popic等,基因组Biol。 2015),Ancestree(El-Kebir等人,BioInformitics 2015),Canopy(Jiang等,PNAS,2016),Clonevol(Dang等,Ann。,Ann。 oncol。 2017),Calder(Myers等,Cell Systems,2019),Pairtree(Wintersinger等,《血液癌发现》,2022年),Orchard(Kulman等,2023),…2015),Citup(Malikic等人,生物信息学2015),Lichee(Popic等,基因组Biol。2015),Ancestree(El-Kebir等人,BioInformitics 2015),Canopy(Jiang等,PNAS,2016),Clonevol(Dang等,Ann。,Ann。 oncol。 2017),Calder(Myers等,Cell Systems,2019),Pairtree(Wintersinger等,《血液癌发现》,2022年),Orchard(Kulman等,2023),…2015),Ancestree(El-Kebir等人,BioInformitics 2015),Canopy(Jiang等,PNAS,2016),Clonevol(Dang等,Ann。,Ann。oncol。2017),Calder(Myers等,Cell Systems,2019),Pairtree(Wintersinger等,《血液癌发现》,2022年),Orchard(Kulman等,2023),…
上诉人 Veritas 项目和 Veritas 项目行动基金(统称“Veritas 项目”)辩称,俄勒冈州禁止未经通知录制口头对话的法规违反了第一修正案。Veritas 项目提出了实际应用和表面挑战。它争辩说,该法规是对言论表达的基于内容的限制,应受到严格审查,并且该法规由于范围过广而表面无效。由于俄勒冈州的法规不会基于观点进行歧视或限制对整个主题的讨论,因此我们认为该法规在内容上是中立的,并且经得起中级审查。由于 Veritas 项目未能证明该法规的任何违宪应用大大超过其合宪应用,因此 Veritas 项目无法证明表面无效。因此,我们驳回 Veritas 项目的要求并维持地方法院驳回申诉的命令。
本章重点介绍了量子力学的工具和数学。随着这些技术在本书后续章节中的应用,一个重要的反复出现的主题是量子力学不寻常的非经典特性。但量子力学和经典世界到底有什么区别呢?理解这一差异对于学习如何执行经典物理学难以或无法完成的信息处理任务至关重要。本节以对贝尔不等式的讨论作为本章的结尾,贝尔不等式是量子物理学和经典物理学之间本质区别的一个引人注目的例子。当我们谈论一个物体,比如一个人或一本书时,我们假设该物体的物理属性独立于观察而存在。也就是说,测量仅仅是为了揭示这些物理属性。例如,网球的物理属性之一是位置,我们通常使用从球表面散射的光来测量位置。随着量子力学在 20 世纪 20 年代和 30 年代的发展,出现了一种与经典观点截然不同的奇怪观点。如本章前面所述,根据量子力学,未观测粒子不具有独立于观测而存在的物理属性。相反,这些物理属性是系统测量的结果。例如,根据量子力学,量子比特不具有“z 方向自旋 σ z ”和“x 方向自旋 σ x ”的确定属性,每个属性都可以通过执行适当的测量来揭示。相反,量子力学给出了一组规则,这些规则在给定状态向量的情况下,指定当测量可观测的 σ z 或测量可观测的 σ x 时可能出现的测量结果的概率。许多物理学家拒绝接受这种新的自然观。最著名的反对者是阿尔伯特·爱因斯坦。在与鲍里斯·波多尔斯基和内森·罗森合著的著名“EPR 论文”中,爱因斯坦提出了一个思想实验,他认为该实验证明了量子力学不是完整的自然理论。 EPR 论证的本质如下。EPR 对他们所谓的“现实元素”感兴趣。他们认为,任何这样的现实元素都必须在任何完整的物理理论中得到体现。该论证的目标是通过识别量子力学中未包括的现实元素来表明量子力学不是一个完整的物理理论。他们试图做到这一点的方法是引入他们声称的物理属性的充分条件
2021年2月23日,委员会成员Inhofe董事长里德(Reed)主席,感谢您有机会证明新兴技术对我们国家安全未来的重要性。我将从对美国技术领导状况的广泛看法开始,然后讨论未来的国防格局,并以对五角大楼的一些建议结束。我以我的个人身份提供了这些观点,但是我的经验是我领导国家安全委员会(NSCAI)和国防创新委员会(DIB)的经验,以及我在慈善事业,施密特期货和私营部门的工作。我的许多观点都在此处预览AI委员会即将发布的最终报告中的结论和建议,该报告定于3月1日公开发布。我今天的论点很简单:当涉及新兴技术时,我们的政府需要正确的基本面。我的意思是两种方式。首先,为了保持民族竞争力,我们需要专注于将对我们的经济,社会和安全产生广泛影响的基本技术。第二,要塑造军队,我们将来需要捍卫美国,我们必须尽快将基本的构件放置在原地。这些包括人,研究,技术基础设施以及我将要描述的其他基本要素。AI委员会的最终报告包括许多关键建议,以赢得全球技术竞争并加强国防。行动的逻辑令人信服。我敦促委员会认真考虑采用与您的工作相关的所有建议,并鼓励您的同事在其他委员会上这样做。
MG Schmidt 获得的奖项和勋章包括国防服役勋章、功绩勋章、铜星勋章、战斗行动勋章、跳伞大师勋章、空中突击勋章、国防部长办公室识别徽章和陆军参谋识别徽章。MG Schmidt 毕业于美国陆军指挥参谋学院和美国陆军战争学院。
摘要:发展量子系统的自洽热力学理论对现代物理学至关重要。尽管它在量子科学和技术中发挥着重要作用,但目前还没有统一的形式来描述一般自治量子系统中的热力学,许多基本问题仍未得到解答。沿着这个思路,大多数当前的努力和方法将分析限制在近似描述和半经典状态的特定场景中。在这里,我们提出了一种基于众所周知的施密特分解来描述任意二分自治量子系统热力学的新方法。这种形式提供了一个简单、精确和对称的框架来表达相互作用系统之间的能量,包括超出标准描述范围的场景,例如强耦合。我们表明,这一过程可以直接识别适合表征物理局部内部能量的局部有效算子。我们还证明这些量自然满足通常的热力学能量可加性概念。
摘要 — 施密特分解及其相关分析使得识别单个物理系统各个子系统之间的统计依赖关系成为可能。所考虑的系统可以是量子态,也可以是经典概率分布。本研究考虑了两个不同的物理系统:量子薛定谔猫态和微粒双缝干涉。结果表明,所考虑的系统具有单一的内部结构,可以用干涉替代的一般术语来描述。开发了一种有效的方法,使我们能够计算干涉的光学特性,例如可见性和相干性。结果表明,干涉替代环境状态的标量积是光振荡相干性的经典复参数的自然概括,它决定了干涉图案的可见性。获得了干涉图案可见性与施密特数之间的简单定量关系,施密特数决定了量子系统与其环境之间的连接水平。所开发的方法被推广到多维薛定谔猫态的情况。