Murukarthck Jayakodi 1,31,34 , Qiongxian Luke 2,3,34 , M. Timothy Rabanus-Wallace 1,34 , Micha Bayer 4 , Thomas Lux 5 , Benjamin Jaegle 6 , Wubishet Bekele 9,32 , Brett Chavang 10 , Boyke jørgensen 2 , Jia-wu Febig 1 , Anne Fiebig 1 , Hedrun Gundlach 5 , Georg Ha Berer 5 , Mats Hansson 13 , Axel HimMelbach 1 , iris Hoffe 1 , Robert 1 , Haifei Hu 12,14 , Sachiko Isobe 15 , Sandic M. Kale 2,33 6 , Manuela KNAAFT 1 , Simon G. Krattinger 17 , Jochen Kumlehn 1 , Chengdao Li 12,18,19 , Marone 1 , Andreas Maurer 20 , Klaus F. X. Mayer 1 , 22 , Emiko Murozuka 20 , Pierre A. Pierre A. 24 ro sato 15,27 , danta schüler 1 , Thomas Schmutzer , Uwe Scholz 1 , Miriam Schreiber 4 n 2 , Josquin F. TIBBTS 16 , Martin Toft Simmelsgard Nielsen 2 , Cynthia Voss 2 , Penghao Wang 12 , Robbie Waught 12 n 2 , Runxuan Zhang 4 , Xiao-Qi Zhang 12 , Thomas Wicker 6 ✉ , Christophy Dockter 2 ✉ , Martin Mascher 1,30 ✉ & Nils Stein 1,20 ✉
自动:Rabanus-Wallace,M。Timothy; Mascher,马丁;勒克斯,托马斯;柳条,托马斯;甘德拉赫(Heidrun); Baez,Mariana; Houben,Andreas; Mayer,Claus F.X.;郭,梁丽安格;波兰,杰西; Pozniak,Curtis J。; Walkowiak,肖恩; Melonian,乔安娜; Praze,Coraline R。; Schreiber,Mona; Budak,Hykmet;马蒂亚斯;转向,伯克哈德;沃尔夫,布兰德; Börner,Andreas;拜恩斯,布鲁克; Jana的Čížková; Fowler,D。Brian;弗里茨,艾伦;希梅尔巴赫,阿克塞尔; Kaithacotyl,Gemy; Keilwagen,Jens;凯勒(Keller),击败;音乐会,大卫;拉尔森,杰米; Li,Qiang; Myo,Beata;萨德哈尔人Padmarasu;拉瓦特,尼迪; sess,uğur;生活方式 - 卡亚,塞兹吉;夏普,安迪; Šimcová,哈纳;小,伊恩;大卫·斯瓦布雷克(Swarbreck);海伦娜;纳塔利亚; Voylocov,Anatoly v。; Vrána,Jan;鲍尔,夏娃; Boliboc-Boliboc-Ska,Hanna; Doležel,Jaroslav;霍尔,安东尼;吉亚(Jizeng);康沃尔,维克多;拉罗克(Laroch),安德鲁(Andrew);好吧,Xue-Fengence;奥尔顿,弗兰克; Özkan,Hakan;莫妮卡的Racozy-Trojanowska; Scholz,UWE;舒尔曼,艾伦·H。 Seekmann,Dörthe; Stojałowski,Stefan; Tiwari,Vijay K。; Spannangle,Manuel;斯坦,尼尔斯
[OL 4.2] 10:50-11:10 用于人类干细胞衍生的胰岛和肝脏类器官功能性共培养的无泵微流体装置 Aleksandra Aizenshtadt、Shadab Abadpour、Chencheng Wang、Mathias Busek、Gruenzner Stefan、Alexey Golovin、Justyna Stokowiec、Hanne Scholz、Stefan Krauss 混合技术中心、奥斯陆大学基础医学科学研究所、奥斯陆大学医院免疫学和输血医学系、奥斯陆大学医院移植医学系和外科研究所,挪威奥斯陆 德累斯顿工业大学微系统系,德国德累斯顿 [OL 1.3] 11:10-11:30 基于人体 3D 神经组织的体外创伤性脑损伤模型 Luc Stoppini、Marc O. Heuschkel、Loris Gomez Baisac、Yoan Neuenschwander、Denis Prim、Cédric Schmidt、Marc E. Pfeifer、Jérome Extermann 和 Adrien Roux 组织工程实验室,HEPIA HES-SO 瑞士西部应用科学与艺术大学,日内瓦 1202;诊断系统研究组,生命技术研究所,瑞士西部应用科学与艺术大学 (HES-SO Valais-Wallis) 工程学院,锡永 1950;微纳米技术组,HEPIA HES-SO 瑞士西部应用科学与艺术大学,日内瓦 1202,瑞士 HEPIA/HES-SO,瑞士日内瓦
组织在一个行业与文化和其他力量的相互作用要求组织通过建立和维持竞争优势来遵守和保持一致,以保持生存和成功。当存在激烈的竞争和动态环境时,这将变得更加至关重要。在这种情况下,必须有各种拟合,例如策略拟合,战略性拟合和文化合身。这种拟合确保了需要什么以及为带来繁荣所要做的事情的和谐。但隔离,这些拟合可能不会导致最大输出,因此必须在这些拟合之间进行对齐。这是一项概念研究,努力回答这些谜语以及文化在创造战略,战略和文化契合方面的作用。本研究研究了业务策略和功能策略之间动态能力的中介作用,并将人力资源领域作为人力资源实践。本研究提出了一个模型,该模型将帮助管理人员和研究人员在动态环境下利用竞争优势。关键字:战略拟合,战略性拟合,文化拟合,人力资源实践,动态功能,竞争优势介绍全球化使组织成为一个复杂的系统,必须通过与不同的环境力量进行交互,必须动态运行(Scholz,2012)。需要彻底了解组织内部和外部环境的影响(Beer,Voelpel等人。2005)。 这个2005)。这个
正在进行的博士学位 Christophe Piveteau 2021 硕士 Christian Bertoni,统计力学中的信息论和重正化 2020 硕士 Paula Belzig(与科隆的 D. Gross 合作),研究稳定器 de Finetti 定理 - 在量子信息处理中的应用 2019 硕士 Dina Abdelhadi,使用部分平滑熵的量子协议界限 2019 硕士 Sami Boulebnane(与 MP Woods 合作),量子时钟和非拆除测量 2018 博士 David Sutter(与 R. Renner 合作),近似量子马尔可夫链 2018 硕士 Luca Petrovi´c,表面码矩形形状的效率 2016 硕士 Álvaro Piedrafita,基于互补性的通道自适应解码策略 2016 硕士 Raban Iten(与 D. Sutter 合作),不同量子 Renyi 之间的关系发散 2016 硕士 Axel Dahlberg,量子纠错码 2015 博士 Felipe Lacerda(巴西利亚大学访问学生),容错量子计算的经典泄漏恢复能力 2015 硕士 Stefan Huber(与 VB Scholz 合作),位置和动量的操作驱动不确定性关系 2014 硕士 Dominik Waldburger(与 D. Sutter 合作),量子极化码 2012 硕士 David Sutter(与 F. Dupuis 合作),仅使用极化码实现任何 DMC 的容量
欧内斯特·王美国国土安全部本杰明·萨拉萨尔美国国土安全部威廉·杰克逊美国国土安全部蕾妮·史蒂文斯·史蒂文斯美国国土安全部yonas nebiyeloul-kifl美国国土安全部Arthur Scholz Miter patricia Miter patricia Miter Brad Moranter Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Moran Morn. Moran Morn.miter-Miter-Mornand-Kift W. Lewis航空航天公司Sai Kalyanaraman Collins博士Aerpase Helmut Helmut Imlau Deutsche Telekom Lannie Lannie Lannie Lannie Lannie Herlihy联邦航空管理局Andrew F. Bach F. Bach Financial Servisical Confiness顾问Victor yodaiken fsmlabs fsmlabs fsmlabs fsmlabs inc. Microchip Paul E. Black博士国家标准与技术研究所Ya-Shian Li-Baboud国家标准与技术研究院Magnus Danielson Net Insight AB Deepak Maragal New York Power Authoration new York Power of Cristina Seibert seibert Dr.杰夫·达格尔(Jeff Dagle)西北国家实验室洛里·罗斯·奥尼尔(Lori Ross O'Neil Pacific)西北国家实验室迈克尔·奥康纳(Michael O'Connor)卫星博士克里斯蒂娜·莱利(Christina Riley)
本季度为 2024 年的“选举年”画上了句号,进一步表明了世界各地选民对现任总统的不满。唐纳德·特朗普和共和党在 11 月 5 日的美国大选中强势回归,赢得了总统大选的普选,并控制了参议院并保持了众议院多数席位。日本首相石破茂的自民党-公明党联盟在 10 月下旬的大选中失去了多数席位——尽管他保住了职位,但他将不得不以少数派的力量来治理国家,通过逐项政策来争取支持。面对民调恶化和政党间不满的压力,德国总理奥拉夫·肖尔茨解雇了其联盟伙伴财政部长,导致政府垮台;在信任投票失败后,联邦选举定于 2 月举行。法国四分五裂的议会无法就预算达成一致,并对政府投了不信任票——米歇尔·巴尼耶让位于弗朗索瓦·贝鲁,后者面临着同样艰巨的任务,即团结不同的政党来解决国家的赤字问题。在韩国,总统尹锡烈于 12 月 3 日突然宣布戒严,理由是反对派政客“从事反国家活动”,但这一决定很快被立法机构推翻,导致他随后被免职。叙利亚的阿萨德政权在 12 月叛军的进攻下突然垮台,这远远超出了我们的投资范围——但从人道主义和地缘政治角度来看,它仍然很重要。
飞机系统 – 可靠性、质量、功率和成本 Dieter Scholz - 德国汉堡应用科学学院 1 简介 虽然飞机系统设计是飞机设计的一部分,但在初步飞机设计中似乎并没有给予太多重视。在飞机质量预测方面,飞机系统被简要考虑。初步设计考虑了起落架,燃料储存问题也是如此。可以考虑飞行控制系统的类型(全动力或手动驱动)。其他任何事情通常都留给更详细的设计活动。本文的目的是:通过强调飞机系统设计的重点:可靠性、质量、功率和成本,将飞机系统设计的视角扩展到初步飞机设计水平之外。飞机系统的重要性 飞机系统的质量约占飞机空重的 1/3。同样,飞机系统具有很高的经济影响:中程民用运输的开发和生产成本的三分之一以上可以分配给飞机系统 - 对于军用飞机而言,这一比例甚至更高。以相同的比例,飞机的价格由飞机系统驱动。飞机系统约占直接运营成本 (DOC) 和直接维护成本 (DMC) 的三分之一。历史趋势 自 1960 年以来,可以观察到飞机轮廓和一般设计概念的稳定性。尽管如此,从那时起已经取得了显着的进步:就像空气动力学、结构和动力装置得到优化一样,飞机系统的经济性、可靠性和安全性也得到了逐步改善。这是通过不断改进和优化服务经验、研发以及采用新技术而实现的。对这些变化影响最大的可能是数字数据处理。2 定义 飞机系统:飞机上相互关联的项目组合,用于执行特定功能。
飞机系统 – 可靠性、质量、功率和成本 Dieter Scholz – 德国汉堡应用科学学院 1 简介 尽管飞机系统设计是飞机设计的一部分,但在飞机初步设计中似乎并没有给予太多重视。 在预测飞机质量时,只会简要考虑飞机系统。 初步设计会考虑起落架,以及燃料储存问题。 可能会考虑飞行控制系统的类型(全电动或手动)。 其他任何事情通常留给更详细的设计活动去考虑。 本文的目的是: 通过强调飞机系统设计的重点:可靠性、质量、功率和成本,将飞机系统设计的视角扩展到初步飞机设计层面之外。 飞机系统的重要性 飞机系统的质量约占飞机空重的 1/3。同样,飞机系统具有很高的经济影响:中程民用运输工具的开发和生产成本中有超过三分之一可以分配给飞机系统 - 对于军用飞机来说,这个比例甚至更高。以同样的比例,飞机的价格是由飞机系统决定的。飞机系统大约占直接运营成本(DOC)和直接维护成本(DMC)的三分之一。历史趋势自 1960 年以来,飞机轮廓和总体设计概念趋于稳定。尽管如此,从那时起已经取得了显著的进步:就像空气动力学、结构和动力装置得到优化一样,飞机系统的经济性、可靠性和安全性也得到了逐步改善。这是通过通过使用经验、研发以及采用新技术的不断发展和优化而实现的。对这些变化影响最大的可能是数字数据处理。2 定义飞机系统:在飞机上执行特定功能的相互关联项目的组合。3 细分飞机系统以其功能为特征。在民航中,按照 ATA iSpec 2200(美国航空运输协会 (ATA) 著名的 100 规范的后继者)对飞机系统进行分组是一种常见的做法。
灵气和其他能量疗法被纳入许多州的护理标准范围,可以解决压力、同情心疲劳和倦怠等问题。护士越来越容易受到这些情况的影响;灵气可以帮助他们自愈并帮助他人。灵气是一种振动或微妙的能量疗法,据信可以平衡人体的生物场并增强人体的自愈能力。灵气是一个日语单词,解释为“精神意识与宇宙生命力的结合”。这种生命力或“气”可能会在人体内受到干扰,导致精神或情感层面的失衡,并发展为能量功能失调,从而导致组织学疾病(Cushman & Hoffman,ŢŠŠŤ)。灵气也是一种生活哲学,指出所有生物都是相互联系的(Mills,ŢŠŠš)。灵气能量通过治疗师的双手流入人体生物场的负能量模式,并用正能量充电,提高身体内外的振动水平。它加强能量通路或经络,以自然的方式促进愈合(DiNucci,ŢŠŠť)。灵气恢复被压力或负面情绪阻塞的整个身体微妙能量系统的能量平衡和活力(Scholz,šũũŨ)。描述这种生物场动态的护理诊断是“能量场紊乱,人体周围能量流的中断,导致身体、心灵和/或精神的不和谐”(NANDA,ŢŠŠť)。护士必须认识并支持愈合的精神层面(Engebretson 和 Wardell,ŢŠŠŧ)。灵气是分层次学习的。灵气大师将灵气振动能量传递给学生,这被称为启蒙或合一。据信,这会使学生对生物场能量变化更加敏感;这与基本的自我护理有关,并且很容易融入到人们的生活方式中。这种有意识的、充满激情的实践是“抚慰、滋养和恢复”的(Brathovde,《灵气》,第 34 页)。