常州银河世纪微电子有限公司(GME)保留对本文中任何产品信息(版权所有)进行更正、修改、改进或其他更改的权利,恕不另行通知。GME 不承担因应用或使用本文所述任何产品而产生的任何责任;也不转让其专利权或他人权利下的任何许可。
在过去的十几年中,β-Ga 2 O 3 器件特别是肖特基势垒二极管(SBD)发展迅速,性能得到显著提高,目前已接近SiC和GaN的性能[7−12]。目前大面积器件的研究主要集中在与边缘终端的结合[13−16],用于大电流应用的基线器件或称无终端SBD很少研究。我们最近的工作表明,通过界面工程可以大大提高小面积SBD的性能[11],这为大面积器件的发展带来了机会。具有无终端的高性能SBD或许更能体现Ga 2 O 3 SBD的应用潜力。总之,Ga 2 O 3 SBD的应用更为成熟,其应用潜力有待进一步论证。
PIST 失败 STPS20100 (QPL) 75% 80% 100% STPS1045 (QPL) 100% STPS6045 (QPL) 100% 75% STPS40100 (QPL) 70%* 75% 100% STPS3045 (NEW) < 50%** 50% 78% 78% 100% STPS20200 (NEW) 50% 75% 75% 100% STPS61170C (NEW) 40% 50% 76% 44% 59% STPS40H100 (NEW) 50% 65% 80% 75% 100% *2 部件通过 75% **未经测试
1 paris-saclay,CNRS,Laboratoire de physique des solides,91405 Orsay,法国2号法国2化学工程系,科学系,格拉纳达大学,格拉纳达大学,西班牙格拉纳达大学3 Harwellxps,Harwellxps,Harwellxps,研究中心paris-saclay,CNRS,Laboratoire de physique des solides,91405 Orsay,法国2号法国2化学工程系,科学系,格拉纳达大学,格拉纳达大学,西班牙格拉纳达大学3 Harwellxps,Harwellxps,Harwellxps,研究中心paris-saclay,CNRS,Laboratoire de physique des solides,91405 Orsay,法国2号法国2化学工程系,科学系,格拉纳达大学,格拉纳达大学,西班牙格拉纳达大学3 Harwellxps,Harwellxps,Harwellxps,研究中心paris-saclay,CNRS,Laboratoire de physique des solides,91405 Orsay,法国2号法国2化学工程系,科学系,格拉纳达大学,格拉纳达大学,西班牙格拉纳达大学3 Harwellxps,Harwellxps,Harwellxps,研究中心
常州银河世纪微电子有限公司(GME)保留对本文中任何产品信息(版权所有)进行更正、修改、改进或其他更改的权利,恕不另行通知。GME 不承担因应用或使用本文所述任何产品而产生的任何责任;也不转让其专利权或他人权利下的任何许可。
本文研究了用于低功耗应用的肖特基轻 Mg 掺杂 p-GaN 栅极堆栈的捕获效应,并进一步分析了 c 射线辐照下 AlGaN/GaN 界面陷阱。当 c 射线辐照剂量高达 800 krad 时,平带电压的变化可以忽略不计,这表明 p-GaN 栅极结构具有出色的辐射耐受性。在 500 kHz 以下和以上的测量频率下观察到电容弥散之间的差异,这归因于不同位置随栅极电压变化的捕获效应。此外,提出了频率相关电导法来评估不同剂量的 c 射线辐照对 AlGaN/GaN 界面陷阱的影响。基于该方法,除了传统常开型高电子迁移率晶体管(HEMT)中发现的浅陷阱态[陷阱激活能(ET)约为0.334–0.338 eV]之外,在AlGaN/GaN界面处还检测到了另一类更深的陷阱态(ET约为0.467–0.485 eV)。观察到随着辐照剂量的增加,浅陷阱态的ET分布在更深和更宽的范围内。此外,深和浅ET在600 krad剂量辐照后都降低,但在800 krad剂量辐照后都增加。透射电子显微镜和原子力显微镜用于展示光滑的AlGaN/GaN界面形貌,该形貌在800 krad剂量的c射线辐照后不会受到太大的损坏。这项工作可以为进一步了解低压应用的p-GaN栅极HEMT的辐射耐受性和捕获效应提供帮助。
摘要:二硫化钼(MoS 2 )因其较大的带隙、良好的机械韧性和稳定的物理性能而受到研究者的广泛关注,成为下一代光电器件的理想材料。但较大的肖特基势垒高度( Φ B )和接触电阻是阻碍大功率 MoS 2 晶体管制备的障碍。详细研究了具有两种不同接触结构的 MoS 2 晶体管的电子传输特性,包括铜(Cu)金属-MoS 2 通道和铜(Cu)金属-TiO 2 -MoS 2 通道。通过调整金属和 MoS 2 之间的 TiO 2 夹层的厚度来优化接触。具有 1.5 nm 厚 TiO 2 层的金属-夹层-半导体(MIS)结构具有较小的肖特基势垒,为 22 meV。结果为设计 MIS 接触和界面以改善晶体管特性提供了参考。
我们已经在基于绝缘体(SOI)的Schottky屏障光电二极管阵列(PDA)上制造了四元素的石墨烯/硅,并研究了其光电设备性能。在我们的设备设计中,单层石墨烯被用作SOI基板上N型SI通道的光刻定义的线性阵列上的常见电极。通过波长解析的光电流光谱测量显示,在自动操作模式下,PDA结构中的每个元素均显示出最大的光谱响应性约为0.1 A/W。时间依赖的光电流光谱测量值分别具有1.36和1.27 L S的升高时间和秋季时间,显示出出色的光电流可逆性。阵列中的每个元素的平均特定检测率约为1.3 10 12琼斯,而从代码上则是0.14 pw/hz 1/2的小噪声等效功率。预计此处提供的研究将在高增值石墨烯/基于SI的PDA设备应用方面提供令人兴奋的机会。
基于Gan Schottky屏障二极管(SBD),使用反行二极管对(APDP)的频率三副制作者以3.6 GHz的输出频率进行了建模和建模。此外,明确研究并比较了两种连接方案,即APDP系列APDP和Shunt APDP三倍器。与分流APDP三倍器相比,系列APDP三重序列的输出功率更高-0.14 dbm,最小转化率较小26.9 dB。提出了两种类型三级游戏的精确紧凑型模型,以验证三倍体的产生功率和性能的产生。在紧凑的模型中,从i - v特征和宽带小信号s参数中提取了SBD的非线性香料参数和二极管对的寄生参数。三元器的输入和输出网络被取消安装,以确保谐波模拟的准确性。APDP作为频率三倍器的出色性能和相应的模型为设计RF乘数提供了一种实用的选择。
SBTB10300CT TO-263 50 件 / 管或 800 件 / 卷带 SBTB10300CT 最大额定值(@TA =25 ℃,除非另有说明)